
Automatic Page-Turner for Musicians
Vanessa Yan∗

vanessa.yan@yale.edu
Computer Science, Yale College

New Haven, CT

Qinying Sun∗
qinying.sun@yale.edu

Computer Science, Yale College
New Haven, CT

Sally Ma∗
sally.ma@yale.edu

Computer Science, Yale College
New Haven, CT

ABSTRACT
In this final project for Yale CPSC 459/559, we build an interactive
end-to-end system that automatically turns the page for musicians
in real-time. The user is able to upload multiple pages of music
scores to a web app, after which the app parses the notes in the
music scores and detects the pitches and duration of each note at
the end of each music page. At the click of a button, the system
begins to listen to the musician play, matching the visual and audio
information to determine whether the musicians has arrived at the
end of a page, at which point the web app displays the next page of
the music score for the user.

KEYWORDS
interactive, real-time, music recognition, cqt

1 INTRODUCTION
A common problem faced by musicians around the world is flipping
pages of the music scores. Since almost all musical instruments
engage musicians’ hands at a high level, it is inconvenient for
them to flip the sheet music by hand as they play, especially when
the music is complex and fast. In response to this problem, some
musicians choose to memorize the music to eliminate their need
for page turning. However, this approach is typically not realistic
for orchestral musicians, who need to become performance-ready
with long and difficult music in a short time span. Additionally,
to practice the music to the point of being able to memorize it
still requires the musicians to deal with the inconvenience of page
flipping during their practices. Other musicians, typically soloists or
piano accompanists, choose to have a human page turner. However,
human page turners are not always available, and even if they
are, they are typically only available for the actual performances
rather than the many hours of practices musicians do. An existing
alternative for musicians is a foot petal, also known as a foot clicker,
which can be connected with a tablet such that pressing down on
the foot petal flips a page. However, this alternative requires an
extra device to purchase and carry around.

Our goal of the project, therefore, is to create an automatic page
turner for musicians. The page turner would take in multiple elec-
tronic sheet music images, listen to the musician play, and display
each sheet music image one by one for the musician. The benefits of
this automatic page turner include: 1) it would eliminate the need
for manual or pedal page turning, making it more convenient for
musicians to play music; 2) it would be available at any time any-
where, for practice or for performance; and 3) it wouldn’t require
an extra device other than the tablet.

To achieve this goal, our approach consists of 5 key steps: 1) seg-
ment the last row of a sheet music; 2) read music: get an array that
∗All authors contributed equally to this project.

represents notes’ duration and pitches in the last row sequentially;
3) convert real-time audio into an array of pitches and duration; 4)
determine page turning by match the audio array with the sheet
music array; 5) create a user interface that brings the whole system
together end-to-end and allows users to interact with the integrated
system in real-time.

2 RELATEDWORK
Automatic page turning is intimately related to the problem of
score following, an open research problem that seeks to allow the
computer to track a musical performance in the form of audio, in a
corresponding score representation. The most recent work on score
following leverages machine learning to learn a direct mapping
between sheet music and audio. Henkel et al. uses a multimodal
deep learning method of creating an audio-conditioned U-Net for
position estimation in full sheet images [8]. Dorfer et al. uses a deep
reinforcement learning (RL) algorithm, which includes multimodal
RL agents that simultaneously learn to listen to music, read the
scores from images of sheet music, and follow the audio along in
the sheet, in an end-to-end fashion [5]. In another paper, Dorfer et
al. uses multimodal convolutional neural networks to learn joint
embedding spaces for short excerpts of audio and their respective
counterparts in sheet music images [6]. In the early stage of our
project, we attempted to base our system on these approaches in
order to leverage the state-of-the-art and allow the page turner
to deal with complex music. However, we found that none of the
papers’ associated reference code online functions properly despite
our debugging efforts (see supplementarymaterials formore details)
1.

Instead of relying on machine learning to learn the mapping
between audio and sheet music end-to-end in a black box, we broke
down the process into sub-problems and tackled each separately.
One core sub-problem is sheet music parsing. Past approaches to
allowing computer to parse sheet music use computer-readable
representations of scores, such as MusicXML or MIDI [11]. This
representation is created either manually (e.g. via the process of
setting the score in a music notation program), or automatically via
optical music recognition software [1, 9]. Noh et al. filed a patent
for an apparatus that outputs audio data corresponding to a mu-
sical score image provided, by extracting musical signs, pitches,
and duration from the sheet image [4]. However, current automatic
methods are still unreliable, especially for more complex music
such as orchestral pieces [15]. We specifically experimented with
the online reference code of Pacha et al.’s "A Baseline For General
Music Object Detection with Deep Learning," which leverages Ten-
sorFlow’s Object Detection API to classify musical primitives such

1The corresponding code for the aforementioned most recent work can be found re-
spectively at: https://github.com/CPJKU/audio_conditioned_unet/, https://github.com/
CPJKU/score_following_game/, and https://github.com/CPJKU/audio_sheet_retrieval

https://github.com/CPJKU/audio_conditioned_unet/
https://github.com/CPJKU/score_following_game/
https://github.com/CPJKU/score_following_game/
https://github.com/CPJKU/audio_sheet_retrieval


as note heads, stems, slurs, etc. [13]. Even with the best train model,
we found the results to be unsatisfactory (see more details in the
appendix). We also experimented with cadenCV, which mainly uses
template matching for music parsing [12]. Although the system
could only handle monophonic music, we considered it a promising
starting point because the system yielded the best preliminary re-
sults so far and we found it easier to improve the system due to the
greater transparency behind template matching in comparison with
neural networks. Our approach built and expanded upon cadenCV,
as elaborated in the Method section.

Another core sub-problem is tracking a musical performance
through audio input. Previous work in the area includes the Aubio
system [2] and Melodia Vamp plug-in[14]. However, both methods
fall short on this specific task: the pitch detection either takes too
long (not real-time) or is not accurate enough to match all the
midi note. In the audio processing part, we draw the Constant-Q
transform method proposed by Schoerkhuber and Anssi [3]. We
also compared this method to Mel Frequency Cepstral models[10],
zero-crossing method, and neural networks [7].

3 METHOD
As aforementioned, there are five main segments of this project:
row segmentation, read the pitches and duration of the music sheet,
real-time audio processing, a comparison algorithm that determines
whether to flip the page, and an end-to-end system built upon Flask.

3.1 Row Segmentation
The purpose of Row Segmentation is to bring down the image size
so that the next step of template-matching takes much less com-
putational time. A main premise of the row segmentation process
is that we only care about the last row/ staff of each page of the
music score.

To segment out the last row of any music score, we perform
two main steps. First, we crop out all the white space beneath
the last row in the following way: (i) inverting all black text to
white (ii) finding non-zero points (the black text) and (iii) finding
a minimum spanning bounding box around the area with text.
Then, we further segment out the last staff by (i) dividing the image
into horizontal bands and summing over pixel values in each band
and (ii) comparing across bands to find the first band that has a
lower pixel sum (more black) than its neighbors. We iterate through
different band height and step sizes until we arrive at a valid output.

3.2 Read Music
Our approach to detecting the pitches and duration of a music staff
is inspired by cadenCV and mainly uses template matching. The
original system takes the following key steps to parse music:

(1) Convert the input image into a matrix of binary-valued pix-
els;

(2) Detect staff location by accumulating the number of black
pixels in each row and mapping a binary image into a his-
togram, and a staff corresponds to a distinct peak (see Figure
1 for an example of the resulting histogram);

(3) Segment and classify primitives bymatching to labelled prim-
itive templates; note pitch values are determined by observ-
ing which row index the center of a note’s bounding box lies,
relative to the staff line or space sharing the row index;

(4) Correct eighth notes from misclassification as quarter notes
by determining if an eighth or sixteenth flag is in the vicinity
of the note head or whether it is beamed with adjacent notes
(beaming is determined by if the column central to adjacent
notes contains more pixels than expected);

(5) Detect key signatures by counting the number of accidentals
at the start of a given staff and apply the key’s accidentals
to note primitives;

(6) Sort primitives by horizontal position on their staff and ob-
tain an array of music semantics sequentially: the rests’ du-
ration as well as notes’ pitches and duration;

Figure 1: Histogram of the binary image for detecting staff
location, where a staff corresponds to a distinct peak

We built and expanded upon the system by first transforming
the output such that instead of outputting a MIDI file, it outputs
an array denoting the duration of rest as well as the duration and
pitches of notes sequentially. We also added recognition support for
sixteenth notes and additional time signatures such as 6/4 and 3/2
time. We consider sixteenth note or rest the smallest unit, which
takes up one index in the output array, and eighth note or rest
takes up two indices, etc. Additional improvements we made to the
system include:

(1) Testing and extending the original code to cover edge cases
such as not finding beginning and ending column indices
for staff;

(2) Fixing the bugs in the original code to correct its use of
iterating index in order to account for the deletion of eighth
flags from an array variable while correcting for misclassified
eighth notes;

(3) Rewriting the code to achieve greater efficiency, reducing
the time of parsing a three-staff image from 1 minute 43
seconds to 37 seconds;

(4) Increasing its accuracy in staff detection by (i) directly using
template matching on staff images instead of binarizing the
image then mapping the binary image into a histogram (ii)
adding new templates for staff detection that extend the sys-
tem’s generalizability (iii) tuning the thresholds for template
matching against staffs

(5) Debugging the code to account for edge cases for number of
staffs and notes detected.

An example output corresponding to Figure 2, which displays
an example last row of sheet music image, is:

[’A4’, ’A4’, ’A4’, ’A4’, ’A4’, ’A4’, ’A4’, ’A4’, ’A4’, ’A4’, ’A4’, ’A4’,
’A4’, ’A4’, ’A4’, ’A4’, ’B4’, ’B4’, ’B4’, ’B4’, ’D5’, ’D5’, ’D5’, ’D5’, ’D5’,

2



’D5’, ’D5’, ’D5’, ’D5’, ’D5’, ’D5’, ’D5’, ’B4’, ’B4’, ’B4’, ’B4’, ’A4’, ’A4’,
’A4’, ’A4’, ’G4’, ’G4’, ’G4’, ’G4’, ’A4’, ’A4’, ’A4’, ’A4’, ’B4’, ’B4’, ’B4’,
’B4’, ’B4’, ’B4’, ’B4’, ’B4’, ’B4’, ’B4’, ’B4’, ’B4’, ’B4’, ’B4’, ’B4’, ’B4’, ’A4’,
’A4’, ’A4’, ’A4’, ’A4’, ’A4’, ’A4’, ’A4’, ’B4’, ’B4’, ’B4’, ’B4’, ’A4’, ’A4’,
’A4’, ’A4’, ’G4’, ’G4’, ’G4’, ’G4’, ’G4’, ’G4’, ’G4’, ’G4’, ’G4’, ’G4’, ’G4’,
’G4’, ’G4’, ’G4’, ’G4’, ’G4’]

Figure 2: Example last row of a sheet music

3.3 Real-time Audio Processing
The primary goal is to take a real-time audio stream and output
accurate pitch detection immediately. While there is previous work
done in the area, none of them can match the pitch of musical
instruments accurately without much noise. Most signals turned
out to be fluctuating and lost the real pitch information. Therefore,
we started from taking raw signals from themicrophone, processing
it with constant Q transform, using a buffer to smooth out noises.

Audio input Audio input is taken from the microphone of de-
vices using pyAudio, which stems from PortAudio v18 API. The
default setting is 1 channel (considering that we are only taking the
performance of musical instruments), with frequency of 44100Hz,
16 bits, buffer size 1024, in the format of paFloat32 (better accu-
racy compared to paInt16). Note that a quiet environment is more
than crucial to the audio input. With audible noises in the back-
ground (for example, the noise of a heater, a car driving by, someone
talking), the pitch detection below could be skewed by a lot.

Constant Q Transform (CQT) Taking a time-domain signal,
CQT is a time-frequency representation where the frequency bins
are geometrically spaced and the Q-factors (ratios of the center
frequencies to band-widths) of all bins are equal. In other words, it
uses a series of logarithmically spaced filter fk , with the k-th filter
having a spectral width δ fk equal to a multiple of the previous
filter’s width. We used the package librosa for this purpose.

Figure 3: the CQT spectrum for Mary Has a Little Lamb

Note that CQT, though fast and accurate in most cases, does have
its own constraints. It would misunderstands the octave a note is in.
For example, if we play C5 followed by C4, while the CQT would
find the Q-value of C5 highest at the beginning, as C4 starts, since
they are an octave apart, the Q-value of C5 would remain high.

Figure 4: Q value of C5 followed by C4

Considering the fact we are only trying to decide whether or
not to flip a page, and our visual input from the last row is usually
quite long and is composed of various notes, the octaves a note is
in should not matter too much in terms of deciding the location. In
music composition, it is rare to see two measures differ from each
other simply by octaves they are in. Therefore, we still decide to use
CQT and acknowledge this limitation of accurate octave detection.
Further details could be find in the comparison algorithm section
and test evaluation section.

Stream buffer and processingWe maintain a stream buffer of
size 1024. This buffer size allows us to take in 3 signals per time. We
always turn the signals within the buffer to a numpy array first. We
then use the CQT algorithm, with 12 bins per octave (each pitch as a
bin) and 60 overall bins (a total of 5 octaves which should cover the
range of most frequently used notes for all musical instruments).
We then convert the CQT matrix from amplitude to db, and find
the pitch (frequency bin) with the highest Q value (in db) as the
most likely pitch. We take the middle signal out of the three in the
buffer, smoothing out the onset and offset noise. In fact, the 0th and
the 2nd pitch detected constantly fluctuated a lot while the middle
pitch remained constant in most of the time.

Comparison with other feasible methods A sets of methods
were being tested here to find themost accurate and reliable method.
Those include:

• Mel-Frequency Cepstrum in the frequency domain, which
runs more slowly compared to CQT, and cannot be directly
converted to a note pitch.

• Zero-crossing in the time domain, which has lots of false,
random detections that cannot be smoothed.

• Neural network, which asks for extensive training data. Most
open source trained neural network models were trained on
speech data, rather than music pieces. Those models tend to
mix two neighboring pitches together since each pitch has a
frequency bin of around 50 Hz.

All of those methods also have the problem of misunderstanding the
octave a note is in (as the C5 followed by C4 example). Therefore,
we still ended up using the CQT algorithm.

An additional version of processing and smoothing amusic audio
file rather than audio stream is provided in the repository with code
and tutorials. The CQT algorithm is even more accurate and further
smoothing and concatenating of the noises could be performed.

3



3.4 Comparison Algorithm
With both the visual and the audio detections, we perform compar-
ison algorithms to see if there is a match and would need to flip the
page. We take the music sheet visual input as the correct version.
The audio has to perfectly match the pitch of the visual input of the
last row in order to flip the pitch. In addition, the relative length
of notes matters. If the ratio is not within a reasonable range, the
algorithm will determine the audio to be not matching the sheet,
therefore, not flipping the page. Considering that musicians gener-
ally play slower or off the speed proportion when they get to the
end of a page in practice, we did not try to come up with the best
range. We use 0.5 as the default value, but this could be subject to
users’ preferences.

We take an extra step in the comparison algorithm to make the
visual sheet data easier to compare with: we turn them from a 1-D
array to a 2-D array, the first column being the value of the pitch,
and the second column being the length of that pitch. Note here
that in our data representation, there is no difference between two
eighth note and a quarter note, though there will be a difference in
the actual music performance (there will be a short break between
the two eighth note but not in the quarter note). We will discuss
how our algorithm deal with this feature in the paragraph below.

The Real-time comparison starts as the stream first hits the first
note of the visual input. For each pitch, we listen to the audio and
get the length of the pitch. We also include a buffer here. The buffer
is set to be a third of the length of the pitch. Within this buffer, if
we hear the pitch of the next note, we will assume that this note
has ended, and then compare the ratio of the length of this note
in audio and in the sheet to see if they are proportional. If yes,
we move on to the comparison of next note; if no, we start over
again. Back to the buffer, if we hear the pitch of the current note
again, we know that there might be a short break (might be the
one between the two eighth notes). Since we do not account for
their differences, we would assume we are back to the current note,
restart the buffer, and add the length of the the buffer loop to the
length of the current note. If we exhaust the length of the buffer
before hearing the current note or the next note again, we know we
are at the wrong place. Therefore, we will start over from finding
the match of the first note again.

We perform special processing for the rest note. Wewould ignore
the audio signal for the expected length of the rest note in the audio
(the ratio we have seen times the length of the visual signal) and
proceed to the comparison of the next note. If the rest is at the end
of the row (input array), we would ignore it and return whatever
result we had from previous comparisons.

The last note is also taken specially. Considering the fact that
people tend to play the last note on the last row short or long as
they are thinking about flipping the page, we do ask the length
ratio of the last ratio to match the previous ones. As long as the
pitch is hit, we consider a matching. However, we will flip the page
one the duration of the pitch ends. This way, the performer gets to
decide how long they want to play the last note before flipping the
page.

Comparison for music files rather than real-time is easier and
could be more accurate. Besides the matching of pitches, two meth-
ods were performed to compared to length ratio. One is for each

pitch, we find the corresponding ratio between the audio and the
sheet, and see if the ratios match. Another method is for each pitch,
we would have an expected length of that pitch in the audio (ratio
times the length of the sheet). We could then read the audio of
that length, and get the percentage of that pitch in that length. If
the percentage is higher than certain barrier, there is a match. A
detailed analysis of those methods and some more complicated
ones could be find in the supplementary material and the tutorial.

Our real-time comparison draws ideas from both approach. For
each pitch, we do the ratio comparison. But then, we also use the
idea of expected length in the design of buffer, letting the algorithm
adjust to short breaks/noises in the audio input.

3.5 End-to-end Flask System
We created a Flask-based web app in order to integrate the whole
system and allow users to have real-time interaction with our auto-
matic page turner.

On the index page, a user could upload multiple sheet music im-
ages in JPG and PNG format through drag and drop. Upon receiving
the user’s uploaded images, the server reads and processes each
image. To deal with the technical limitations of the Flask frame-
work, we constructed the server such that it calls file.seek(0) on
each FileStorage object representing each uploaded image, reads
the object as a byte string, converts the string into a numpy array,
and passes it to cv2.imdecode, in order to successfully read each
uploaded image. To process each image, it calls functions that seg-
ment the last row and reads the music to obtain the pitch-duration
array, and stores the resulting array in a global variable. It also
stores the image urls for the uploaded images in a global variable.

Once the processing finishes, the web interface redirects the user
to a page that displays the first sheet music. Whenever the user is
ready to play music, they could click the "Start Recording" Button,
which sends a POST request to the server to activate our function
for receiving and parsing audio signals. Whenever the comparison
function returns True for page flipping, the server renders the next
sheet music image. The server increments a current page index to
keep track of the proper sheet music image for display. Except for
the first sheet music image, the server always performs an auto-
refresh 3 seconds into displaying a new sheet music, which leads to
a new GET request to the server with a nonzero current page index,
such that the audio processing and comparison function could be
activated again.

Whenever the user wishes to start over, they could click "Back"
to return to the main page of image uploading, and the previous
results will be cleared for a fresh start.

4 EXPERIMENTS
Since there is no available dataset, We used MuseScore to manually
construct music sheets as well as corresponding audios with differ-
ent BPM (beats per minute). Since we don’t have a correct labeling
dataset, we also manually label the correct output of the visual
information, and test the correctness of overall pitch detection and
page flipping. The test dataset we constructed could be found here,
where the directory /wav includes all the wav files we constructed
using MuseScore, the directory /samples includes all the sheet mu-
sic as sample input to the system, and the directory /lastrow_output

4

https://github.com/xm83/AutoPageTurner/tree/master/app/resources


includes all the golden outputs of the system corresponding to each
sheet music input.

4.1 Sheet music processing
To test the note detection functionality, we compare the output
from note_detection.py with the manually labeled golden output.
Among all the test results, the staff detection comes out perfectly.
Then, in the step of note detection within each staff, the test file
Mary has the best performance because of its simple structure: all
its notes are monotonic, situated among the staff lines, and are
either quarter, half, or whole notes. For scores like Bluebird, dona,
and hush, and Kookaburra, the detected pitches match the golden
output, but distinguishing between quarter and eighth notes is
difficult because of the diverse number of ways in which eighth
notes could be grouped together. For files like fire, telemann, and
teapot, the system correctly detects notes a bit above, a bit below,
and all within the detected staff, but the notes that are further away
from the top or bottom of the staff are not detected. For mammy, all
the notes are detected except for the rest note, which is currently not
supported by the system. Similarly, winter has rest notes that are
not supported. The system also currently performs better on flats
than sharps, as illustrated by the performance of ringo and telemann
versus races. Given the difficulty of the note detection problem, we
can consider relaxing the comparison algorithm (between notes
detected audibly and visually) to allow room for error. A relaxation
would further support the case that a user plays a music slightly
off pitch.

4.2 Audio Processing
It is hard to test the accuracy with real-time audio processing as we
would not have the correct labeling. Instead, we tested our Audio
Processing algorithm manually by playing different pieces of mu-
sics through MuseScore and see if our audio processing algorithm
outputs the right note. This is performed on the sets of notes below:

(1) individual notes from C3 to B5
(2) arpeggio of different majors and minors
(3) same note on different octaves
(4) different note on different octaves

As mentioned earlier, while other parts of the detection have really
high accuracy rate (almost always correct as long as the key is
playing), same or different note on different octaves becomes tricky.
The later note is always influenced by the previous note. For the
example we mentioned: playing a C4 after a C5, we approximately
get C4 half of the time and get C5 the other half of the time. After
playing a G5, even if we play a F4, it is classified as F5 most of the
time. Most of those distortion is one octave apart. Fortunately, if
we allow a difference of 12 (one octave) when we are comparing
the pitches, we would be able to catch the right pitch all the time.

4.3 Comparison Algorithm
The comparison algorithm works almost all the time. We ran the
comparison on jupyter lab. The python notebook could be find in
the supplementary material. Besides the piece "Mary," which is the
one we used to come up with the initial algorithm, there are ten
short pieces, each having different music features (some of them
have rest signs, some of them have sound conjunction, some of

them have split notes, some of them have note of all four beats
while others have 16th notes, etc.). For each test, each piece was run
ten times. And the number below the success rate out of those ten
times, in percentage. Note that those evaluations were run in quite
environments. Noisy environment might end up with 0% success
rate.

Tests with Different Starting Time We first test how the al-
gorithm performs page flipping at different starting time. Since the
algorithm assumes that the whole last row would be played, if the
starting time is after the exact time, we define success as no page
flipping happens. If the starting time is the exact time or before, we
define success as page flipping happens, and only happens when it
gets to the end of the page. The starting time of before or after the
exact time is randomly chosen.

Evaluation of Starting Time (Success rate, in percentage)
Music Piece Exact Before After
Mary 100 100 100
Hush 100 100 100
Fire 100 100 100
Teapot 100 100 100
Winter 100 100 100
Bluebird 100 100 100
Mammy 80 70 100
Ringo 100 90 100
Races 100 100 100
Dona 100 100 100
Telemann 100 100 100

From the chart, we can conclude that the algorithm generally
performs really well, especially at not flipping the page if started
playing after the last row. For playing at the exact time, the only
case it fails is with piece Mammy, where there are a sets of 16th note.
A closer inspection of the outcome suggests that the algorithm has
trouble detecting it since those notes are short in time and are also
neighboring notes of the one before them. The algorithm also failed
once with Ringo. That failure was not reproducible so it could be
the problem of that one-time real-time recording.

Tests with Different Playing Speed We then try to test the
robustness of the algorithm with different playing speed, as we
would hope that no matter how fast or slow the musician play the
piece, the algorithm can still accurately flip the page. The tests are
performed starting at the exact time. The success rate is based on
flipping the page at the right time, in percentage.

Evaluation of Playing speed (Success rate, in percentage)
Music Piece 80 bpm 40 bpm 120bpm
Mary 100 100 100
Hush 100 100 100
Fire 100 100 100
Teapot 100 100 100
Winter 100 100 100
Bluebird 100 100 100
Mammy 80 100 70
Ringo 100 100 100
Races 100 100 100
Dona 100 100 100
Telemann 100 100 100

5



We note that playing the music more slowly generally helps
the algorithm to better determine the flipping. Especially for the
piece Mammy, as the playing speed gets slowed down, the 16th
note can be clearly detected, therefore, achieving a success rate of
100 percent. Meanwhile, playing it faster hurts the result even more.

Overall speaking, given the high success rate, the algorithm is
robust and trustworthy.

4.4 Overall System
To test the integrated system, we interacted with the web app 10
times to simulate real-world use cases. Each time, we uploaded a
set of sheet music image samples; the set includes different num-
ber of images, from 2 to 6, in order to test the system’s ability to
handle multiple image. In all 10 trials, the system correctly up-
loads users’ images, parses them, stores the result, redirects the
user to the page that displays the first sheet music, and activates
the audio processing and comparison function. The parsed outputs
that the server prints to the terminal are the same as the results
of running the music sheet parsing algorithm separately, showing
that the integration of sheet music processing works as expected.
Additionally, whenever the parsed result is the same as the golden
output, and the surrounding environment is noise-free, the audio
comparison function also returns the flip signal at the correct time,
showing that the integration of the audio signal processing and
comparison into our system works as expected. Clicking "Back"
and re-uploading images also shows expected behavior where pre-
vious results are cleared for a fresh start. Overall, the testing shows
that the web app succeeds in integrating our system, achieving
real-time user-interaction, and demonstrating the functionalities
we implemented.

The testing also shows limitations of our system. Firstly, when
the parsed result contains errors, the page flipping signal is not
obtained properly; secondly, the page flipping signal is not obtained
properly whenever there is noise in the surrounding environment.
The testing result suggests that future improvement should include
better sheet music parsing as well as better fault and noise tolerance
in our audio processing and comparison algorithm.

5 CONCLUSION AND FUTUREWORK
This project is a proof of concept and there is still a lot could be done
in the future. For example, we could expand from the monophonic
scenario to a much more complex, real-life music sheet.

One crucial takeaway is that neural networks or machine learn-
ing methods in general are not always the best approach to tackle
down a real-life problem. In this project, we have experienced
machine learning techniques at all parts. However, none of those
attempts worked. Through some more basic, intuitive, and physical
ways, we were able to reach our goals.

In the Audio Processing part, we could work on detecting the
pitch of all octaves accurately (i.e. eliminating the influence of
other notes of different octaves), potentially through mel-frequency
method. We could also examine the case where we have to tell
multiple pitches happened at the same time. One potential idea
would be taking the ones with highest Q values (and above a certain

barrier). But we might need ample data set to find out the barrier
and the most efficient way.

In the comparison part, we could further work on different sce-
narios. For example, what if some portions of the audio playing is
wrong? Can we flip the page with some mistake tolerance? Another
way of improvement is to shorten the reaction time. For example,
before we actually hit the last note of the last row, we should proba-
bly already flip the page. Those details have to be determined with
actual user cases and large enough data set.

Additional future work includes making the web app more user-
friendly and multi-functional. For example, we could implement
user login and account, such that multiple users can use our system
at the same time and enjoy custom functions such as saving their
previously uploaded images for re-use if needed. We could improve
the UI of the app for a better user experience, and host our web app
on a cloud server so that the app is more accessible.

REFERENCES
[1] Stefan Balke, Sanu Pulimootil Achankunju, and Meinard Muller. 2015. Matching

musical themes based on noisy OCR and OMR input. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
Brisbane, Australia, 703–707.

[2] Paul Brossier, Juan Pablo Bello, and Mark D. Plumbley. 2004. Real-time temporal
segmentation of note objects in music signals. In International Computer Music
Conference. Miami, Florida.

[3] Schoerkhuber Christian and Anssi Klapuri. 2010. Constant-Q transform toolbox
for music processing. In 7th Sound and Music Computing Conference. Barcelona,
Spain.

[4] Joo-Sub Kim Dong-Hoon Noh. U.S. Patent 7 547 840 B2, Jun. 2009. Method and
Apparatus for Outputting Audio Data And Musical Score Image.

[5] Matthias Dorfer, FlorianHenkel, andGerhardWidmer. 2018. Learn to Listen, Read,
and Follow: Score Following As a Reinforcement Learning Game. In Proceedings of
19th International Society for Music Information Retrieval Conference. The Austrian
Research Institute for Artificial Intelligence, Austria.

[6] Matthias Dorfer, Jan Hajič jr., Andreas Arzt, Harald Frostel, and Gerhard Widmer.
2018. Learning Audio–Sheet Music Correspondences for Cross-Modal Retrieval
and Piece Identification. In Transactions of the International Society for Music
Information Retrieval. The Austrian Research Institute for Artificial Intelligence,
Austria, Article 1(1), pp.22–33. pages.

[7] Etienne Barnard et al. 1989. Pitch deteciton with a neural-net classifier. CSETech.
[8] Florian Henkel, Rainer Kelz, and Gerhard Widmer. 2019. Audio-Conditioned U-

Net for Position Estimation in Full Sheet Images. The Austrian Research Institute
for Artificial Intelligence, Austria.

[9] Jan Hajic jr and Pavel Pecina. 2017. The MUSCIMA++ Dataset for Handwritten
Optical Music Recognition. In Proceedings of 14th International Conference on
Document Analysis and Recognition (ICDAR). New York, United States, 39–46.

[10] Beth Logan. 2000. Mel Frequency Cepstral Coefficients for Music Modeling. In
International Symposium on Music Information Retrieval.

[11] Marius Miron, Julio Jose Carabias-Orti, and Jordi Janer. 2014. Audio-to-score
alignment at the note level for orchestral recordings. In Proceedings of the 15th
International Society for Music Information Retrieval Conference (ISMIR). Taipei,
Taiwan, 125–130.

[12] Afika Nyati. 2017. cadenCV: An Optical Music Recognition System with Audi-
ble Playback. Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, MA 02139, United States.

[13] Alexander Pacha, Jan Hajič Jr., and Jorge Calvo-Zaragoza. 2018. A Baseline for
General Music Object Detection with Deep Learning (Digital Audio and Image
Processing with Focus on Music Research). Institute for Visual Computing and
Human-Centered Technology, Austria.

[14] J. Salamon and E. Gomez. 2012. Melody Extraction from Polyphonic Music Signals
using Pitch Contour Characteristics. In IEEE Transactions on Audio, Speech and
Language Processing.

[15] Verena Thomas, Christian Fremerey, Meinard Muller, and Michael Clausen. 2012.
Linking Sheet Music and Audio - Challenges and New Approaches. InMultimodal
Music Processing, volume 3 of Dagstuhl Follow-Ups, Masataka Goto Meinard Muller
and Markus Schedl (Eds.). Schloss Dagstuhl–LeibnizZentrum fuer Informatik,
Dagstuhl, Germany, 1–22.

6



Figure 5: Example output, with minimum threshold score
set to 0.5

Figure 6: Example output, with minimum threshold score
set to 0.1

A APPENDIX
A.1 Alternative Sheet Music Parsing Using

TensorFlow
The section documents our experimental results of parsing sheet
music by leveraging TensorFlow’s Object DetectionAPI. The dataset
used for training the neural network is MUSCIMA++, which con-
sists of 140 images of annotated sheet music images; the advantage

of the dataset is that it has a graphical structure where the ver-
tices of the graph are music primitives (e.g. stem, notehead-empty,
notehead-full, beam, slur, etc.), and the edges of the graph connect
music primitives to each other, from which information such as
pitch and duration could be inferred.

We built upon the online reference code by fixing setup issues ne-
glected by the original code’s instructions and testing on new sheet
music images with different minimum threshold scores (which de-
termines the minimum confidence score associated with a bounding
box that allows the classification result to be included in the the final
result). The original plan was that once we reached a relatively good
detection result, we would implement a search through the result;
based on the music primitives and locations of their corresponding
bounding boxes, we could parse these primitives into sequential
notes and rests along with their duration and pitch changes based
on their types and relative heights; a future improvement would be
altering the model such that it infers not only vertices of the graph
(the music primitives), but also the edges (how these primitives are
connected).

However, we were surprised by the unsatisfactory performance
of the best train model. As an example, Figure 5 shows the output
of the model with min threshold score set to 0.5, and the model
misses the classification of many music primitives; Figure 6 shows
the output of the model with min threshold score set to 0.1, and the
model still misses certain classification, and for some music prim-
itives such as the first treble clef, there are multiple overlapping
classifications with almost identical confidence score. The result
demonstrates that the model is not robust enough to handle com-
plex electronic sheet music. Another problem with this system is
the speed: to process a three-staff score "Mary Has a Little Lamb",
the system takes over 3 minutes, whereas cadenCV takes half as
long and our final improved system takes only 37 seconds. It’s not
desirable for users to wait a long time while our system processes
their uploaded images.

Our experimental results demonstrate that deep learning doesn’t
work well for our use case at the moment. To improve the result,
future efforts could include having a data set much larger than just
140 images to deal with the variance in how music primitives look
like in sheet music.

More experimental results could be found in the supplementary
materials.

7


	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Row Segmentation
	3.2 Read Music
	3.3 Real-time Audio Processing
	3.4 Comparison Algorithm
	3.5 End-to-end Flask System

	4 Experiments
	4.1 Sheet music processing
	4.2 Audio Processing
	4.3 Comparison Algorithm
	4.4 Overall System

	5 Conclusion and Future Work
	References
	A Appendix
	A.1 Alternative Sheet Music Parsing Using TensorFlow


