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Figure 1: Our photography lighting setup, including the 4-
DoF Shutter robot and two lamps with remote-controllable
Philips Hue Bulbs

ABSTRACT
Manually ensuring proper lighting when capturing portrait photos
can be a time-consuming and tedious task, as well as difficult for
novice users. In order to ease the burden of photographers, and also
enable automated systems to take high quality photos, we designed
a routine that automatically adjusts lighting to optimally prepare a
robot photography system for capturing portrait photographs. We
combine multiple different existing image quality metrics and use
those metrics as a reward for a neural network system that learns
how to optimize lighting. In our arrangement, the neural network
system is connected to two Hue light bulbs whose brightness it can
adjust however it sees fit. We achieve promising results and demon-
strate the feasibility and practicality of such a robot photography
system. We also highlight exciting avenues for future research.
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1 INTRODUCTION
In portrait photography, proper lighting of a scene is vital to captur-
ing high-quality photos. Expert studio photographers must account
for numerous variable factors including the equipment, the poses
of both photographer and subjects, and qualities of the subject
themselves. Through training and experience, they learn how to

control their studio lighting to capture an aesthetically pleasing
photograph that captures the image of the subject as desired.

Now more than ever before, photography has gone from an
art dominated by experts to a daily activity for millions of people.
The presence of digital cameras on smartphones and computers
and the proliferation of these devices into households has meant
that the ability to snap photos at a moment’s notice has become
a given for the everyday user. Concurrently, autonomous robot
photographers are being developed for a number of applications,
from photographing events like weddings to taking portraits [9,
14]. Despite these innovative hardware designs and computational
methods, high-quality portrait photos remain nearly impossible
to create without studio equipment and training of professional
photographers.

The task of replicating professional-quality work has become a
foundational problem for computational photography. The presence
of "portrait mode," which artificially applies blur to the background
of an image, is a selling point for popular smartphone brands like
the iPhone [7]. Commonly available filters and image masks can
mimic post-processing modifications popular in photography by
modifying the exposure, white balance, brightness, and contrast
of photographs using a variety of computational techniques [2].
However, these techniques still struggle to create the lighting effects
of real studio lighting handled by professionals.

In this project, we seek to bridge this gap by designing a system
that can learn to control remote-controllable lights to achieve aes-
thetically pleasing portrait photos. Our goal is to create a system
that can help turn relatively structured environments into profes-
sional studios by automatically adjusting the connected lights to
capture the best possible portrait.

Though portrait quality is subjective to a degree, there exists
an agreed-upon standard of high-quality photography among both
professionals and the general public. As such, there also exist com-
putational methods that perform image quality assessment (IQA)
and predict professional opinions with impressive reliability, rang-
ing from simple metrics like image entropy to those using the power
of CNNs to extract image features [17].

Building on recent work in image quality assessment, we lever-
age the power of deep reinforcement learning to design a system
that can learn to optimize image quality as measured by these met-
rics. Our system is designed for the Shutter Robot. The system
automatically gathers training data from the environment, includ-
ing image data, lighting data, face poses, and the robot pose. This
data is then input into a neural network, which through training
learns to predict the best lighting action for the scene, given the
current state of the world.
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Figure 2: The neural network architecture we leverage to estimate the instantaneous reward for reinforcement learning

2 RELATEDWORK
2.1 Image Quality Optimization/Assessment
Some previous works have explored the potential of deep CNNs
to optimize the quality of photographs. Google’s Creatism [4] is a
deep-learning system designed for photography by learning not
only how to best post-process an image, but also how to best com-
pose (i.e. frame) a photo. The system includes its own deep image
quality assessment network (or "scorer"), which learns separate
aspects of aesthetics, including lighting, color composition, and
framing. Using the trained scorer network and otherwise unlabeled
professional quality photos as input, the network is then trained
to optimize image quality given a particular image operation, such
as saturation and cropping. A separate, lighting-related operation
the authors call dramatic masking is trained using a Generative-
Adversarial Network (GAN). The results from this systemwere then
evaluated by professional photographers, with impressive results
- 41.4% of the photos predicted by the network to be at or above
semi-pro level were agreed to be at such a level by professionals.
This system design and its results are exciting; however, the system
is still learning to optimize a particular scene post-capture, after it
chooses a scene to capture. The system does not change anything
about the capture environment, as we aim to do.

Interestingly, the lighting optimization problem we examine
is tightly coupled to similar problems in robotics. The Adaptive
Lighting for NLOS system [3] optimizes the lighting position to
maximize the radiosity of images beyond the line of sight of the
camera attached to a robotic arm. This optimization is performed
using the Sequential Least Squares algorithm over the discrete set
of patches onto which the light might be shined. While the authors
saw much success from this algorithm, their problem was limited in
domain as they were optimizing for radiosity over all the patches -
radiosity per patch could be measured relatively simply by lighting
one patch at a time.

Perhaps the prior research that is most relevant to our specific
problem formulation involves systems grappling with how to per-
form No-Reference Image Quality Assessment (NR-IQA) [1]. NR-
IQA refers to the process of judging image quality with no ground
truth images on which to base quality judgements. NR-IQA is par-
ticularly relevant to this problem context because collecting and
hand-labeling data for referenced Image Quality Assessment would
be extremely costly and time-consuming. That said, there are many
famous NR-IQA architectures that have been published fairly re-
cently and perform quite well on established datasets, including
BRISQUE [12], BIQI [15], Hallucinated-IQA [11], and DIQA [8].
However, the challenge that these metrics present for our system
is that they tend to measure spatial components of images to judge
quality (e.g. blurring) more so than characteristics like brightness.
However, some no-reference metrics such as image entropy [16]
do show potential to optimize lighting due to their measurement
of aspects such as image contrast and sharpness. Consequently, we
believe these metrics can help form a solid basis for our system’s
instantaneous reward function needed for reinforcement learning.

2.2 Reinforcement Learning
Finally, work in the field of reinforcement learning, such as Google’s
DQN [13] and DDPG [10] has revealed the vast potential of deep re-
inforcement learning methods that use exploration. To achieve our
goal, it makes the most sense to capture data in batches rather than
perform explorative learning, given that lighting is a spectrum and
can be explored relatively easily through simple discretized linear
combinations of brightness. Unlike the sequential environments
in DQN where Q-values are used as a measurement of eventual
reward, our problem domain comes with simple one-step rewards
thanks to our image quality metrics.

One consideration in this decision to collect data in advance was
that standard off-policy deep reinforcement learning algorithms
can suffer from extrapolation errors when training data differs
considerably from the distribution under the current policy [5]. As
a result, we made an effort to include a wide variety of training
data that would closely resemble the policy distribution.



Lights! Camera! (Optimal) Action!
Learning a Lighting Policy for Robot Photography Conference’17, July 2017, Washington, DC, USA

Figure 3: Some of the different robot poses we collected data from for training our neural network. We varied both height and
orientation for each pose, and at each pose we adjusted all the other parameters to ensure robust data collection.

3 METHOD
3.1 Physical Setup
Our physical system configuration is shown in Figure 1. We employ
two stationary lamps with script-controllable hue bulbs coupled
with the Shutter robot model. We also use a Linux laptop with
GPU capabilities for its ROS compatibility and ability to train our
neural network models. Note that this setup is in a controlled envi-
ronment (university laboratory room), which reduces some of the
complexity that would come from developing a system in-the-wild.
At the moment, the lights are fixed and changes in lighting are
limited to brightness only, but our approach would enable fairly
easy incorporation of other lighting decision options such as color.

3.2 Problem Definition
We define our formulation of determining the best lighting policy
as a reinforcement learning problem. Specifically, the problem can
be defined by the following Makrov Decision Process parameters:

• S = {I × FP ×RP ×B} describes the state space of the overall
lighting photography system. Here, I represents potential
64 × 64 resized cropped images of a face from the robot’s
RGB-D camera, FP is the set of potential (x,y, z) poses of
the face in the robot’s base coordinate frame, RP is the set
of possible robot poses, and B is the tuple corresponding to
potential brightness levels of the two light bulbs (b1,b2).

• A = {a1,a2} describes the action space of the lighting sys-
tem,wherea1 anda2 correspond to the potential commanded
light brightness levels for the different bulbs. These bright-
ness levels range from 0−240, and are discretized by intervals
of 30 for the reward network implementation.

• R describes the reward function calculated on the cropped
face image from the color camera feed. For our initial model
the reward consisted solely of image entropy, which is a well-
establishedmetric of image contrast and sharpness computed
on the histogram of an individual image. However, for our
finalmodel we implemented amore complex reward function
that seemed to more accurately capture the aesthetics of
subjectively well-lit portrait photographs

3.3 Reward Function
We tried a number of different image metrics to serve as a reward
for our network:

• Entropy - The entropy of an image is a measure of the degree
of randomness in an image, using information (Shannon)
entropy. This proved to be the most useful of our image
metrics.

• BRISQUE (Blind/Referenceless Image Spatial Quality Evalu-
ator) - Uses Natural Scene Statistics (NSS) to create an image
quality assessment without any ground knowledge or su-
pervision. This metric is specialized for recognizing blurring
and was not particularly effective for our case.

• DeepIQA - Uses a deep convolutional neural network to get
a sense of the quality of an image. This metric, as above,
was not particularly effective in our specific domain, where
the independent variable is lighting, rather than blurring or
some other aspect of the photo.

• Color and Brightness Contrast - These metrics measure the
color and brightness contrast of the image. These metrics
proved to be useful in our domain, particularly when looking
at the local contrast around the face of the person being
photographed.

In the end, we used a combination of entropy and brightness and
color contrast, with a greater weight towards the entropy.

3.4 Data Collection
For our data collection phase, we cycled through a number of dif-
ferent robot poses (camera angle), where for each robot pose, we
cycled through 81 different combinations of lighting (each bulb had
every value in increments of 30 from 0-240, for a total of 9 X 9 =
81 poses). It is important to note that although each of the poses
varied the height and direction the robot was facing, as can be seen
in Figure 3, the variation was not drastic since Shutter’s view was
limited by its surrounding frame. Then, for each of these arrange-
ments, we collected data from two different people. The data itself
consisted of all the necessary information for our state space and
reward metrics, as discussed above in our problem formulation.
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3.5 Solution Approach
Due to the vastness of the state space (64x64 images, possible robot
poses, possible face poses, etc.), we could not run traditional policy
learning without some sort of compression of the state space as
well as the continuous action space. Consequently, we used a deep
learning approach for value approximation, and in the actor-critic
implementation, for action selection as well.

3.5.1 Reward Network Implementation. We designed a neural net-
work which feeds the cropped face images into a convolutional
neural network (CNN), and then feeds the output of the CNN along
with the other state space parameters into a feed-forward network
to more-generally approximate the instantaneous reward function
across the state space. A visual diagram of the entire reward net-
work is shown in Figure 2.

We also discretized the action space such that each light bulb
was restricted to brightness levels separated by 30 units in the range
[0,240], which led to a total action space set size of 81. We feel that
this discretization can be justified from a performance standpoint
because lighting changes on the order of about 10 unit changes in
brightness were found to be fairly small from qualitative testing.
However, adding many more than 81 brightness pairs to the action
space would slow down the interaction considerably, as 81 action
combinations already prompts a system performance time on the
order of about 2-3 seconds. Therefore, from the perspective of our
current model, we believe this trade-off is one that’s worthwhile,
or at the very least worth exploring.

We implemented a CNN and feed-forward neural network through
the Keras API. Specifically, the CNN has various layers of 2D pool-
ing, ReLU activation, batch normalization, and dropout regular-
ization to extract a vector of features from 64 × 64 RGB images.
The feed-forward network is a more shallow network with ReLU
activation throughout.

Finally, in order to optimize the lighting for a picture, the system
takes the current state information and makes the argmax action
(lighting combination) based on the instantaneous reward neural
network over the 81 potential actions.

In this implementation, when dealing with multiple faces, the
network selects the actionwith the highest reward for any once face,
which may not necessarily lead to the best group photo lighting.

3.5.2 Actor-Critic Implementation. A limitation of our reward-
approximator network approach, and reward network more gener-
ally, is that it is only valid for discrete action spaces. Our approach
in particular requires that the program iterate over all possible
actions to find the argmax reward value. While the discretization
of the action space in our problem is relatively inconsequential,
and the argmax iteration not prohibitively costly, we thought it
worthwhile to try an approach in which a deep network directly
outputs the estimated best action in the continuous action space.

Using the network architecture described above as a critic net-
work, we implemented an actor network trained on our captured
dataset, using the critic network gradients with respect to actions
for training. The actor network has an identical architecture to
the critic, except for an added sigmoid layer in the feed-forward
network and a 2-dimensional vector output representing the ac-
tion output. The output represents the 2-dimensional, continuous,

Figure 4: Lighting conditions before (top) and after our (bot-
tom) network policy calculation and light command calcu-
lated from the first version of our instantaneous reward net-
work with limited data

bounded [0, 240] action space of the lighting system. In this imple-
mentation, when multiple faces are present in the input image, the
network chooses the average of the recommended actions for each
face.

4 EXPERIMENTS
We have successfully created the infrastructure to collect and save
images for different robot poses for all the different combinations
of lighting for our two light bulbs. As a result, we have collected
a preliminary data set measuring states, actions, and rewards (a
total of roughly 16,400 samples) captured over a variety of poses,
environments, and actions, for batch reinforcement learning. This
data was used to train and evaluate our reward network and actor-
critic implementations.
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Figure 5: A histogram summarizing the distribution of dif-
ferences between our neural network reward approximator
and the actual instantaneous reward as calculated by our re-
ward function/metrics

4.1 Initial Reward Network Implementation
We first trained a model based on a one pose only dataset (with
roughly 500-1000 data points), as a proof of concept for our gen-
eral network architecture. We then evaluated the reward estimator
network qualitatively, and received generally favorable results. An
example can be found in Figure 4. It is important to note that this
network was limited in terms of poses that Shutter could take pic-
tures from and even the poses at which the human could take, given
that the dataset was so limited. This was our first iteration of the
reward network implementation.

4.2 Final Reward Network Implementation
When then evaluated on a simple train-test split of our more thor-
oughly collected data over multiple poses, and the reward network
model achieved a final mean average percentage error of 5.9% on
the reward value of the input pose, image, and lighting data. Fur-
thermore, the network seemed to map the instantaneous reward
function quite well quantitatively, as discovered through exploring
different combinations of lighting and Shutter pose and calculat-
ing the differences in calculated vs. observed reward. The results
from our experiment are as shown in Figure 5, with differences
between the network output and the actual reward being primarily
centered at zero with high skew due to a few very large outliers
(N = 36,mean = 1.823, SD = 5.014).

In addition to being quantitatively promising, the reward net-
work model was implemented into our ROS architecture for shutter
as a reward estimator, with qualitatively favorable results in subjec-
tively well-lit portrait photos. It is important to point out, that our
network was not perfect from the multiple outliers in the dataset.
There were also test runs qualitatively where extreme lighting
choices would be chosen when they were clearly not optimal, lead-
ing us to believe there may have been two limitations to our model-
namely, our dataset may not have been representative enough of
the underlying data, and our network may not have been able to fit

Figure 6: A flowchart which describes the high-level model
surrounding our actor-critic implementation. Note that "pa-
rameters" refers to all non-image inputs to the network, in-
cluding the poses of Shutter and the human, as well as the
bulb brightness levels.

our data completely based on our reward metrics. Nevertheless, in
general, we feel we have successfully trained our model on a limited
collected dataset and tested it by having it optimize the lighting
based on a pre-programmed initial state (i.e. with bad lighting).

4.3 Actor Critic Implementation
We then implemented an actor-critic network as an alternative
to the reward network approximator mentioned previously. The
general actor-critic model implementation we used for our purposes
is shown in Figure 6. The critic network used in our actor critic
implementation was identical to that mentioned above and so had
identical performance on the test set. To evaluate the actor network,
we used the critic network to label and assess the maximum possible
rewards for each input in the test set. The actor network was then
used to predict best actions for the test set. Finally, these predicted
actions were assessed using the critic network. The reward value
of the actor-predicted actions were, on average, within 1.1% of the
critic-labelled max rewards.

This result suggests the actor was accurately implementing the
best policy described by the critic network on a continuous space
without manual iteration over possible actions. The actor has also
been successfully implemented into our system as a possible deci-
sion maker.

It is important to note, however, that like the reward network
implementation, there were some problems in constructing the
actor-critic model. In particular, the network qualitatively seems
to prefer extreme values for lighting (e.g. [240, 240], with both
bulbs being maximally bright), even though in the vast majority of
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scenarios, maximum lighting is clearly not the best way to achieve
a portrait photo in a controlled setting.

5 CONCLUSION AND FUTUREWORK
We were able to develop and train networks that could both accu-
rately estimate the reward (based on the image metrics described
above) and learn a lighting policy based on that reward learning.
We incorporated these networks into a ROS infrastructure and
hardware setup that allowed us to achieve our goal of building
an interactive and automatic lighting adjustment system for the
Shutter robot photographer.

Looking back on our game plan from the proposal, there are
certainly changes that we made from the initial plan of action in
order to better tackle our proposed problem, especially in terms
of our model formulation. Reformulating the problem as one of
reinforcement learning prompted us to draw inspiration from ex-
isting reinforcement learning techniques like DQN to inform our
approach. Though we did still employ a CNN to extract features
from the cropped face images from Shutter’s camera as part of our
system, we broadened the scope of our model to fit the reinforce-
ment learning framework and better suit the constraints of the
automated lighting problem.

There are many improvements that could be made to our system
to make it more feasible in real-world applications. One such im-
provement could be in algorithmic design. As discussed previously,
reward approximation networks may suffer from extrapolation er-
ror when constrained to precollected batches of data as opposed
to being allowed to explore states and actions. Fujimoto et al.’s
Batch-Constrained Q-Learning (BCQ) algorithms [6] seek to reduce
extrapolation error in learning by accounting for the distribution
of the batch data relative to the range of possible states. This work
suggests that it could be possible to build a batch reinforcement
learning system such as ours while still maintaining favorable per-
formance in more unfamiliar environments.

For some applications, it may even be better to take a more
traditional exploration-based reinforcement learning approach. For
example, if the lighting and photography setup was more mobile
and intended to be moved and restructured often, it would make
the most sense for the system to explore the new environment and
lighting arrangement to learn more quickly about its environment
rather than capturing and storing large batches of new data for
each environment or setting.

One potential problem for our actor system was that we only
worked with a few simple image quality metrics like entropy and
local brightness. These metrics qualitatively measured portrait qual-
ity well, but may have posed difficulties to the network due to their
sometimes unintuitive preferences (for example, an image lit only
from one side may have almost the same metric score as one lit
evenly from both sides). Incorporating a network trained more
specifically on professionally-rated portrait photos (rather than
many types of photos) might be better at discriminating the opti-
mal result image. A future version of our system may incorporate
or emulate these new techniques for determining the reward value
of the captured images.

Further, the ways that we chose to deal with multiple faces
present in the input - either taking the best action for any face, or

taking the average of the recommended actions for each - were
chosen fairly arbitratily. Although they had good results in our lim-
ited tests, future work may choose to find other, more robust ways
of optimizing lighting for multiple faces at once. One possibility
would be to select the action that maximizes the total estimated re-
ward. For designing and training an actor network, one could label
group photos with actions and global (rather than local) rewards,
and design the actor network so that it could take multiple faces as
input and process them as part of the same image.
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