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ABSTRACT
Determining whether human voices are being played through elec-

troacoustic transducers, like a television’s or computer’s loudspeak-

ers, or are being originated from a person without replay, is an

important distinction for voice-activated devices to make. Ideally,

these devices should be able to discern whether audio is originating

from people who are contemporaneous and collocated with the

robot, versus audio that is originating from an electronic device.

The ability of a robot to discern these “here and now" scenarios is

critical to enabling a robot to understand circumstances surround-

ing human social interactions. This body of work addresses this

conundrum by implementing a method to differentiate attributes

that are characteristically and consistently fundamental to voices

replayed through loudspeakers (electronic) versus originated by

a person (in-person). Therefore, we attempt to build a model that

can distinguish between attributes in natural and electronic audio,

recorded on a givenmicrophone. Additionally, we attempt to extend

this to build a generalized model, that can effectively generalize

across audio recorded from multiple microphones. In order to do

that, we explore two different techniques: The first technique uses

a method proposed by [3], to calculate the sub-base over-excitation

of an audio, which has been found to be a distinguishing feature be-

tween natural and electronic audio. The second technique extracts

spectrograms from fixed length audio signals, and uses a CNN to

classify them into natural and electronic audio. Results from the

signal processing technique indicate that these attributes can be de-

tected using the method developed to detect over-excitation in the

sub-bass region of audio, reinforcing the results obtained in the the

work [3]. We also show similar results from the deep learning tech-

nique which shows that we are able to discern between natural and

electronic audio recorded using the same microphone and recorded

using different microphones with reasonable classification accuracy.

The implications of a robust method of differentiating mediated

human voices are numerous. There are potential applications to

human-robot interactions, particularly in academia, security, and

commerce.
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1 INTRODUCTION
The main goal of this project is to be able to accurately classify

human voices relayed through and emitted by an electronic device

(electronic), versus voices directly spoken by a human (in-person).

This classification of audio signals, which has proven to be quite

difficult, is an increasingly important problem to address, especially

with the growing number of Internet of Things (IoT) devices that

are present in our everyday lives. Many of these IoT devices have

voice-activation commands, which in most circumstances should

only be triggered by a human collocated with the device, as opposed

to by a voice emitted by electronic devices such as phones, radios,

or televisions. Even in cases where voice recognition is used for

extra security, a device can still be vulnerable to replay attacks. The

ability to classify audio being emitted by an electronic device may

help thwart unauthorized or unwanted access to voice-controlled

devices.

Discerning between in-person and electronic audio is critical to

determining when a device should respond to a prompt or not. One

approach to solving this problem attempts to exploit the fundamen-

tal differences between audio produced by a human or an electronic

device. Some work already done in security, as illustrated in [3],

shows that in-person audio is characteristically and consistently

distinguishable from electronic audio. Different electronic micro-

phones and speakers have acoustic properties that are sensitive to

varying frequency ranges. Because of this, handcrafted features

used in signal processing methods might not generalize very well

to different speakers and microphones, and may require extensive

tuning for it to work for a given use case. So, in order to have a

system that generalizes to different microphone types and noise

levels, using a neural network might be useful.

This can also be applied in situations that can help people on

the Autism Spectrum. This audio classification can play a part in an

experiment that gives participants opportunities to practice social

skills that are useful in workplace environments. Based on a given

time interval’s audio classification, a robot will decide whether to

interrupt the participant, if he/she is watching TV or listening to

music, or not, if he/she is talking with a friend or on the phone.

These interruptions can help the participant learn to adapt to such

situations, which can help increase the participant’s employability,

as seen in [7].

We also attempt to generalize this method to be able to classify

in-person and electronic audio recorded frommultiple microphones.

This can be useful in scenarios wheremultiple smart devices are con-

nected together to a smart device hub, and all of the smart devices

have different kinds of microphones in-built. So, taking advantage

of such networks, an attacker may attempt to perform malicious

activities using a replay attack on any microphone. Therefore, a
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generalized model should be still be able to detect this anomaly,

and prevent such replay attacks.

This project attempts to exploit the characteristic differences in

audio produced by humans and electronic devices, similar to [3].

This project will also explore alternatives to the algorithm used in

the paper such as potentially using convolutional neural networks

on spectrograms of the audio signal to solve this problem. Ideally,

audio data will be an input to the designed system, which will make

a classification to either accept (in-person) or decline the input

(electronic).

So, our work has two contributions:

• We are able to successfully discern between in-person and

electronic audio sources, recorded on one microphone using

two different methods.

• We are able to discern between in-person and electronic

audio with reasonably high confidence, agnostic of the hard-

ware it is recorded on.

2 RELATEDWORK
Signal Processing. Blue et.al. [3] distinguish between human and

electronic speakers to prevent the user against replay attacks on

smart home devices, where an electronic voice can play malicious

commands to the smart speakers, to trigger some unwanted activi-

ties. They use a property inherent to the design of modern speakers

called sub-bass over-excitation. Sub-bass over-excitation is the pres-

ence of significant low frequency signals (20-80 Hz) that are outside

the range of human voice. This is one of the features of the audio

that differs between the human vocal tract and the construction of

the encasing of modern electronic speakers. They also show that

sub-bass over-excitation is a phenomena present in all classes of

speakers, whether high or low quality. The specifics of this method

is explained in greater detail in Section 3.3.

Through our experiments, we realised that this method does

not generalize well to audio recorded through different kind of

microphones. We also found that the results are sensitive to the

cutoff frequency for what we define the sub-bass over-excitation

region to be based on the hardware we use.

Audio Classification using Spectrograms. One popular

methodology to understand the time-frequency characteristics of

audio is to break the audio signal into small time-windows and take

the Short Time Fourier Transform of each of the time windows. This

allows us to associate an amplitude with each part of the signal for

different frequencies. A visual representation of this for the entire

signal over all windows is called the spectrogram. A spectrogram

is a 2D heatmap of the signal, where one of the axes represent the

frequency and the other axis represents the time. So, for each each

time, the amplitude distribution of different frequencies is color-

coded, to construct the visual representation of the audio signal, as

shown in Figure 3.

This is a commonly used representation of audio signals, for

different audio classification applications. and CNNs are commonly

used for this kind of classification. Multiple different For example,

[5] use CNNs over spectrograms of music to classify the genre of

the music and [1] use a similar methodology for speech emotion

classification. [? ] use a siamese style CNN to perform audio search

in databases containing a sound and a vocal imitation of the sound,

usingmel spectrogram of the audio signal. [1],[2] and [4] show some

other applications of CNNs on spectrograms for audio classification.

To the best of our knowledge, there is no work that attempts to

solve the problem for classifying in-person and electronic audio

using a deep learning technique, so as a starting point, we decide to

use the basic CNNs used for audio classification on spectrograms.

We believe that this method can be effective in classifying in-person

and electronic audio, since the CNN will be able to learn features

that are characteristic to the source of the audio.

3 TECHNICAL APPROACH
3.1 Hardware Description
We record audio using the UMA-8-SP USB Microphone Array [6]

which has an Embedded Digital Signal Processor and a Stereo Dig-

ital Amplifier. It has seven microphones arranged in a circular

configuration to capture audio signals coming in from different

directions.The microphone has a sampling rate of 48kHz and has a

flat frequency response.

Figure 1: UMA-8 USB Microphone Array

The second microphone we used was a Yeti Professional Multi-

Pattern USB Microphone manufactured by Blue. Its relevant tech-

nical specifications are: Sample Rate: 48kHz; Bit Rate: 16bit; Cap-

sules: 3 Blue-proprietary 14mm condenser capsules; Polar Patterns:

Cardioid, Bidirectional, Omnidirectional, and Stereo; Frequency

Response: 20Hz - 20kHz; Sensitivity: 4.5mV/Pa (1 kHz); and its Max

SPL: 120dB (THD: 0.5% 1kHz). The Yeti’s on-board amplifier has an

impedance: >16 ohms; THD: 0.009%, a Frequency Response: 15Hz –

22kHz, and a Signal to Noise: 100dB. The other two microphones

are built-in OEM (Apple (Model Identifier:MacBookPro14,3) and

Dell Spectre) microphones.
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Figure 2: Yeti Microphone by BLUE

We also recorded using a Yeti mic, a MacBook Pro’s OEM micro-

phone and an HP Spectre OEM Microphone. The following table

shows the IDs assigned by us to the different microphones, for

simplicity in reporting and interpreting results:

ID Microphone

1 HP Spectre

2 UMA-8SP

3 Yeti USB Mic

4 MacBook Pro

Table 1: List of microphones used to record audio

3.2 Data Collection Protocol
During the final aspects of the project, collected more data in the

form of audio pairs using different microphones. The microphones

included the Yeti, MacBook Pro’s and Dell’s built-in microphones,

and a miniDSP VocalFusion UMA-8-SP USB Microphone Array.

The audio pairs were collected Waveform Audio File Format. Au-

dio recorded from these devices were trimmed to five-second bits

and operated on by the signal processing and NN models. Au-

dio recorded were from different settings including conversations,

classrooms, and podcast recordings. We will then generate the spec-

trograms for each of these audio signals and label the spectrograms

based on whether they are generated from natural human voice or

human voice that is played back from a speaker. Emmanuel will

be responsible for collecting, preprocessing and creating the data

pipeline for both the signal processing and deep learning methods.

Figure 3: Command Phrases

Additional data was collected using an automated procedure

where, the subject was asked to speak random phrases and a fixed

length audio was recorded from a given microphone. Then, the

subject was asked to stop speaking, and the recorded audio was

played by a speaker, and while the audio was playing, it was re-

recorded by the same microphone. We repeated this procedure for

all the specified recording hardware in Table 1.

3.3 Signal Processing Technique to Classify
In-Person and Electronic Audio

For both in-person and electronic audio files, the analysis was the

same. This approach and implementation were very similar to the

ones taken in [3]. Only one channel from the microphone array

that did the recording was used in the analysis. The audio was then

sliced up into windows, each with the duration of one tenth of a

second.

For each window, the discrete Fourier transform (DFT) was com-

puted for the frequency range of 20-250 Hz, using a fast Fourier

transform (FFT) algorithm in MATLAB. Fourier transforms find

frequency components of a signal by converting the signal from

the time to frequency domain. Next, the single-sided amplitude

spectrum and the power spectral density is calculated, and nor-

malized, for each window in the frequency range of 20-250 Hz.

Taking the integral of this power spectral density within a certain

frequency range gives the amount of energy in the audio file within

this range. This integral was taken for the sub-bass region (20-90

Hz) and the region of 20-250 Hz for the normalized power spectral

energy curves. The energy balance metric (EBM) for every window

as calculated by taking the energy in the sub-bass region and divid-

ing it by the energy in the 20-250 Hz region.

Each window had a different EBM value, and the final value of

the EBM for an audio file was equal to the median EBM value, after

removing outliers.

3.4 Spectrograms
As explained in Section 2, a spectrogram is a visual representation

of the spectrum of frequencies of a signal as it varies with time. A

spectrogram is represented with two geometric dimensions: one

axis represents time, and the other axis represents frequency; a third

dimension indicating the amplitude of a particular frequency at a
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a) Electronic b) In-Person

Figure 4: Spectrograms of the phrase "hello" recorded by
a microphone(in-person) and re-recorded by a microphone
(electronic) forms

Figure 5: Network Architecture

particular time is represented by the intensity or color of each point

in the image. There are different types of spectrograms, depending

on how the time, frequency and amplitude axes are scaled. The two

important types are Log Spectrograms, where the frequency and

amplitude axes are scaled logarithmically and Mel spectrogram,

where the frequency axis is scaled according to a precomputed non-

linear function. We decide to use the Mel Spectrogram, because it

is most commonly used in the Deep learning literature for audio.

Figure 3 shows sample spectrograms of the phrase "hello" in

both natural and electronic versions. One of the key things we can

observe from these spectrograms is that they are visually different,

which means that we can possibly use a CNN to classify them as

natural or electronic audio, possibly irrespective of the hardware.

3.5 Deep Learning Method to Classify
In-Person and Electronic Voices

We extract Mel spectrograms of fixed length audio signals, with

2048 fft points, hop length of 512 and 128 mels to construct the

spectrogram. We then passed these through a Convolutional Neural

Network. whose architecture is shown in Figure 4.

4 EXPERIMENTS
4.1 Classification using Sub-Bass

Over-Excitation
Our implementation and preliminary results showed that the dis-

cernment of electronic audio versus in-person audio can be suc-

cessful. At least 22 audio recordings were made using the miniDSP

VocalFusion UMA-8-SP USB Microphone Array. Each audio file was

recorded and compressed in MP3 format at a sampling rate of 48

kHz. Each of the audio files was then played back and re-recorded

using the same microphone array, resulting in pairs of the same

audio; recorded from a playback (electronic), and recorded without

playback (in-person). Each pair of recordings was passed through

the algorithm to obtain an Energy Balance Metric (EBM). This was

also done for all of the Yeti microphone recordings, as well.

Some differences in the characteristics of the electronic and

in-person audio files can be seen in Figures 6 and 7, as well as 8

and 9. Figure 6 shows the single-sided amplitude spectrum for an

electronic file, while Figure 7 shows the same graph, but for the

in-person audio. Figure 8 shows the normalized Power Spectral

Density for an electronic file, while Figure 9 shows the same graph,

but for the in-person audio.

A plot of the Amplitude Spectra, on a logarithmic scale within

the given frequency bins, can be seen below. They depict how the

amplitude of the audio signal is distributed over the frequency

domain window. Figure 5, below shows clear visual differences

within the sub-bass and overall regions compared to the same

sample of in-person voice, depicted in Figure 6.

Figure 6: Electronic Audio Amplitude Spectrum Example

Figure 7: In-Person Audio Amplitude Spectrum Example

Figure 8: Electronic Audio Power Spectral Density Example
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Figure 8, above, depicts the Power Spectral Density (PSD) for

an electronic audio file, and shows the spectral power distribution

decreasing as frequency increases from 20 to 250 Hz. High energy

levels are found within the sub-bass region of the window (20-80

Hz), indicative of the energy contributed by the resonance of the

loudspeaker encasement at those frequency ranges. Below, however,

in Figure 9, is the PSD for the same sample of in-person human

voice, indicating low energy levels within the sub-bass region.

Figure 9: In-Person Audio Power Spectral Density Example

A composite set of results illustrate consistency across 22 ad-

ditional audio samples. EBMs for 22 of the audio recordings were

obtained with the upper band of the sub-bass region set to 80 and

90 Hz, sequentially. Results indicate that setting the upper band of

the sub-bass region to 90 Hz resulted in significantly larger area of

separability between the clusters of electronic and in-person audio,

as shown in Figures 10 and 11, below.

Figure 10: Line Plot of EBM calculated for different corre-
sponding In-Person and Electronic Audio with the Sub-Bass
region described as 20-90 Hz and EBM Width of Demarca-
tion of 0.056929

The line plot showing EBMs’ width of demarcation of 0.056929

for an upper band set at 90 Hz as shown in Figure 10 above is sig-

nificantly larger than the EBMs’ width of demarcation of 0.028092

for an upper band set at 80 Hz, as shown below in Figure 11.

Figure 11: Line Plot of EBM calculated for corresponding In-
Person and Electronic Audio with Sub-Bass region of 20-80
Hz and EBMWidth of Demarcation of 0.028092

The two Figures above show that there is clear difference be-

tween the electronic and in-person, natural audio files. The elec-

tronic EBM value is always higher than the in-person EBM value,

and the lowest electronic EBM is higher than the highest in-person

EBM. This can lead to the selection of a threshold, based on the hard-

ware, in which any EBM value above it is classified as electronic,

and any value below is classified as in-person. Additionally, Figures

8 and 9 shows that selecting an appropriate cutoff frequency for the

sub-bass region can lead to a better demarcation of the between the

two classes, and in our case, the cutoff frequency of 90Hz worked

better than 80Hz, which was used by the paper[3]. More data was

collected and tested to further solidify this classification. Below

are test data results for two microphones, the built-in mic on a

MacBook Pro, and BLUE’s Yeti USB Microphone-Platinum. Figure

12, contains a plot across 68 data pairs, while figure 13 has a plot

across 412 data pairs of electronic versus in-person voices. Figure 12

illustrates a possible limitation to the signal processing method, as

the EBMs were not consistently separable between the audio pairs,

whereas figure 13, using a professional-grade microphone like the

Yeti, resulted in a differentiation that was consistent approximately

95 percent of the time.

Figure 12: Energy Balance Metrics for Electronic and In-
Person Audio Pairs using a MacBoo Pro’s Built-In Micro-
phone
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Mic ID Classification Accuracy

1 83.33%

2 88.88%

3 75%

4 85%

Table 2: Classification Accuracy when trained and tested on
different audio spectrograms recorded from the samemicro-
phone

Mic ID Classification Accuracy

1, 2 61.53%

2, 3 82.14%

3, 4 89.69%

2, 3, 4 86.11%

1, 2, 3, 4 79.03%

Table 3: Classification Accuracy when trained and tested on
different audio spectrograms recorded from combination of
different microphones

Figure 13: Energy Balance Metrics for Electronic and In-
Person Audio Pairs using a BLUE’s Yeti USB Microphone

4.2 Classification using CNNs on the
Spectrogram of the Audio Signal

4.2.1 Training Details. We train the CNN using the Adam opti-

mizer with a learning rate of 1e-5 and a batch size of 1 on 2 NVIDIA

Tesla M40 GPUs with 12GB memory. We added a dropout layer

to the last linear layer of the CNN to prevent overfitting, and the

network was trained for 6 epochs. 80% of the data was used for

training and rest of the 20% were used for testing.

4.2.2 Results and Analysis. The following observations can be

made from the training procedure and results of the CNN:

• The results are highly dependent on the quality of the micro-

phone used to record audio. For example, the classification

accuracy of the data recorded from Microphone 3, which

is the Yeti mic, is not as high compared to the other micro-

phones.

• The model generalizes reasonably well across data recorded

from different microphones. Table 3 shows that when the

model was trained and tested with data from different micro-

phones, which had different audio quality, the classifier was

able to give classification accuracies comparable to the ones

shown in Table 2, which show the classification accuracy for

spectrograms extracted from the same source.

• The network trains in 4-6 epochs, beyond which it shows

signs of overfitting. This means that the spectrograms of the

in-person and electronic audio are highly distinguishable in

most cases in the embedding space.

5 CONCLUSION AND FUTUREWORK
This work is successfully able to discern between in-person and

electronic audio recorded using different microphones with a rea-

sonably high confidence. Here, we propose two methods, one being

the sub-base over-excitation of the audio signal, which can be used

to make the two audio sources discernable, as shown in [3]. The

second method is to extract spectrograms from these audio signals,

and use a CNN to classify the spectrograms into in-person and elec-

tronic audio. Both these methods were able to classify electronic

and in-person audio with reasonably high accuracy, when they

were recorded from the microphone. For the case where data was

recorded from different microphones, the method which used a

CNN to classify spectrograms, performed better than the signal

processing technique, because the signal processing technique uses

a hand crafted feature representation, specific to one particular

microphone. However, the signal processing technique performed

better than the deep learning technique where data was recorded

using a good quality directional microphone(Microphone 2).

Analysis of the output of the network shows that it gets confused

between In-Person audio from onemicrophone and Electronic audio

from another microphone, since some of their spectrograms might

look similar to the network. So, the network might need more

data to learn. Another approach that might help the network learn

these differences between the classes, is to use a Siamese network.

The intuition behind that is that the siamese network will look at

pairs of similar and dissimilar images at a time, and the triplet loss

function used to train the network will reinforce these differences.

Also, siamese network is a technique used for few-shot learning,

which means that we might be able to classify audio with fewer

examples, which will make it deployable real time. Therefore, we

plan to explore this technique in the near future.

6 SUMMARY OF CONTRIBUTIONS
Nick wrote the MATLAB code to implement most of the related

work paper. This involved audio analysis that calculated Fast Fourier

Transforms (FFTs) and Power Spectral Density graphs for each win-

dow. Nick alsoworked on computing energy balancemetrics (EBMs)

for each audio file, which were later used to compare in-person

and electronic audio files. He also wrote the code to continuously

record and wait for audio files to be placed in a folder in MATLAB.

Emmanuel collected and processed data. Analyzed the MATLAB

code and structured the approach to fine tuning the parameters of

the MATLAB code in order to determine optimal computational

thresholds for the sub-bass regions. Compiled and analyzed prelim-

inary results. In conjunction with Nicholas, implemented a struc-

tured signal processing approach in code that returns near real-time

feedback on the determination of the processed audion signals.
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Debasmita collected data and analyzed the results of the signal

processing algorithm for its shortcomings and for opportunities

and areas of improvement. She then experimented using CNNs

on spectrograms to detect other salient features amenable to dis-

tinguishing between electronic versus in-person voices. Multiple

experiments were performed by her by training the CNN on spec-

trograms from different microphones and then validating the gen-

eralization capabilities of the neural network on both in-sample as

well as out-of-sample spectrograms.
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