
LLAMA: Learning Latent trAnsforMations for generative style
trAnsfer

William Hu
william.hu@yale.edu

Yale University

Sydney Thompson
sydney.thompson@yale.edu

Yale University

Nathan Tsoi
nathan.tsoi@yale.edu

Yale University

1 ABSTRACT
We present a method and a tool, called StyleApp (Figure 1), for
smooth interpolation between images of different styles. Our tech-
nique gives the user control over the visual properties of style and
works even when only one sample of a given style is provided.
We also explore different architectures and techniques to facilitate
realistic generation of handwriting styles. In particular, we first
train two types of variational autoencoders on EMNIST [4] to learn
character representations and then fine-tune the models on sam-
ples of our own handwriting to create person-specific networks for
style. After creating our individualized style networks, we investi-
gate latent space clustering and linear transformations as potential
methods for extracting semantic meaning from our learned repre-
sentations. Though our application currently uses labeled data, we
show that unsupervised methods of learning semantics from the
compressed representation of images is possible and hope that our
findings will enable future work.

Figure 1: StyleApp: a tool for visualizing latent representa-
tions.

2 INTRODUCTION
Handwriting style — a phenomenon shaped by personal, emotional,
intentional, and circumstantial factors [5] — varies from person to
person. Despite its high complexity, previous work has shown great
promise in modeling handwriting style from stroke information [1].
However, little work has been done in learning handwriting style
from pixel information. This is likely because strokes provide more
information than static images, making it easier for the model to
learn during training.

For style transfer, the models first learn low-level representa-
tions of characters or text and then apply the learned parameters to
new images. Style transfer is a well-explored area of machine learn-
ing, but methods often resort to “cleverly balancing optimization
strategies” [6] to interpolate between different styles. One class of

generative models that have proven effective in style transfer is
variational auto-encoders (VAEs). For example, Oord, et al. [18] use
VAEs to perform style transfer on audio data. VAEs specialize in
the unsupervised learning of complex distributions by representing
inputs via latent normal distributions parameterized by mean µ and
standard deviation σ , as shown in Figure 2. The latent space can
then be used for sampling with variation to generate content in a
learned style.

This project aims to build a generative model for recreating
person-specific handwriting styles from only character images. We
explore the potential of learning low dimensional representations
of alphanumeric characters for use in style transfer. This is signifi-
cantly more difficult than learning style from stroke information
because our model is not given any temporal data. However, learn-
ing from images is more applicable because stroke information is
not always readily available. Through our work, we aim to under-
stand the nature of handwritten character representation in order
to facilitate interpolation between styles. This would allow users
to modify the characteristics of their handwriting from combining
with other styles. In addition, our model framework is general, so
it can be extended to any domain of VAE style transfer.

3 RELATEDWORK
3.1 Handwriting Style Transfer
Previous work in handwriting style transfer has relied on stroke in-
formation to recreate realistic handwriting samples [1], [16]. Most
notably, Aksan, et al. [1] used stroke information captured from
a tablet to learn sentence-level representations of text. However,
handwriting style transfer using only images is still relatively un-
explored. This is likely because learning from pixel data is a more
challenging task, as stroke information always has implicit tempo-
ral data encoded. In other words, learning from stroke information
is easier because stroke length, frequency, and order capture extra
data relevant to style. Nevertheless, we believe that learning from
pixel data has broader applications for style transfer since stroke
information is not always available. While research has been done
on extracting strokes from images [7], [19], there is no guarantee
that the learned stroke order is identical. In addition, learning style
transfer from character images can give us a better understanding
of character representations.

3.2 Model Selection
3.2.1 Convolutional Neural Networks. Convolutional neural net-
works (CNNs) have been the go-to model for image style transfer
[8], [11]. This is because CNNs are effective at extracting mean-
ingful features from images, including features that are relevant
to style. In particular, Gatys, et al. [8] build a model to learn style



William Hu, Sydney Thompson, and Nathan Tsoi

transfer for paintings, combining the style of one painting with the
content of another.

3.2.2 Generative Style Transfer. For generative style transfer, CNNs
are often used as layers in generative models that seek to learn
image reconstructions for a set of given styles. Variational autoen-
coders (VAEs) are one such generative model that have shown
promise in style transfer [2], [18], [21]. As shown in Figure 2, VAEs
are a class of models that learn latent representations of inputs via
Gaussian means µ and standard deviations σ . They are structurally
similar to autoencoders, but they support generative sampling of
outputs from their learned latent space. In 2017, Oord, et al. [18]
developed a vector quantized-VAE (VQ-VAE) that could learn latent
representations of phonemes to transfer voices from one source
of audio to another. Their model uses convolutional layers to both
extract features and generate reconstructions, producing realistic
audio clips in different voices. Other applications of style transfer
from VAEs include control [21] and music [2].

~

Figure 2: VAE architecture showing the input image and re-
constrution via latent mean and standard deviation vectors.
The ∼ indicates a sampling operation from the normal dis-
tribution parameterized by the latent µ,σ variables.

3.3 Unsupervised Learning of Semantics from
Latent Representations

Though the definition of the term "disentanglement" is still under
debate, it is generally believed that a compressed, factorial latent
space z leads to interpretable and semantically meaningful repre-
sentations [3]. Recent work in representation learning has shown
skepticism towards the idea of unsupervised learning of disentan-
gled representation without inductive biases [13], and in parallel,
there has been research on jointly optimizing dimensionality reduc-
tion and clustering in [20]. Like previous work, we take an approach
to extracting structure and semantic meaning from our learned la-
tent representations. Our focus, however, is not on the end task of
classification, as in [20], but to better understand structure in z to
perform style transfer via interpolation between meaningful points
in latent space.

3.4 Style Loss
To evaluate style transfer, the loss is generally divided into two
components: content loss and style loss. Gatys, et al. [8] formulates
the loss function as follows:

L = αLcontent + βLstyle, (1)

where α and β are the weights for the content and style losses
respectively. Here, the content loss Lcontent is defined as the L2
norm of the difference between feature maps at a particular layer
in the CNN. That is,

Lcontent =
1
2

Nl∑
i=1

Ml∑
i=1

(F li j − P li j )
2 (2)

where F li j is the tensor of feature maps for layer l of the neural
network corresponding to the stylized image and P li j is the tensor
of feature maps for layer l of the neural network corresponding
to the content image. Nl is the number of feature maps within the
layer l , andMl is the height multiplied by the width of the feature
map.

The style loss, on the other hand, is computed as a weighted
average over all layers, wherewl is the weight of layer l :

Lstyle =
∑
l

wlL
l
style (3)

The style loss of an individual layer works to minimize the L2 norm
of the difference between the Gram matrices of the stylized image
and the target style image.

Ll
style =

1
4N 2

l M
2
l

Nl∑
i=1

Ml∑
j=1

(Gl
i j −Ali j )

2 (4)

The Gram matrix encodes information about the style of the image
without coupling too tightly with the content of the image. In this
way, the L2 norm of the gram matrices of the stylized and target
style image provides a reasonable candidate for style loss:

Gl
i j =

Ml∑
k=1

F likF
l
jk . (5)

The Gram matrix Ali j is constructed in the same manner asGl
i j , but

with the feature maps corresponding to the target style image.

4 METHOD
The following describes our exploration method for better under-
standing the compressed representation of character images. This
includes preliminary analysis via clustering of the latent dimen-
sions and t-SNE visualization [15]. Following preliminary analysis
we implement latent traversal, style loss, clustering, and network
fine-tuning. We explore these methods on the BetaVAE and Info-
VAE networks. For all experiments, we use the same encoder and
decoder architecture and vary elements such as components of
the loss and latent dimension size (from 2 to 32). We also describe
in this section the method of style interpolation used in our final
product: StyleApp.

4.1 Preliminary Exploration
To model handwriting style, we first trained a VAE on the EMNIST
dataset [4] to learn character reconstructions. We chose to use a
VAE because once we learned the latent representations of an indi-
vidual’s style, we coule resample from the latent space to generate
realistic variation. In addition, we could explore the latent space to
better understand the character representations in the scope of the



LLAMA: Learning Latent trAnsforMations for generative style trAnsfer

generative model. We considered two different kinds of VAEs for
reconstructions: InfoVAE [22] and BetaVAE [9].

In our preliminary exploration, we trained one InfoVAE [22]
model with 20 latent dimensions and many BetaVAE [9] models
with a range of latent dimensions between 2 and 64. All models
were implemented with Tensorflow, and we experimented training
onMNIST [12] and EMNIST [4] independently. For each dataset, we
held 20% for validation and trained on the remaining 80%. MNIST
[12] only contains the 10 digits [0-9] and was used to determine
whether the model could actually reconstruct character images.
Extended MNIST (EMNIST )[4], on the other hand, contains all of
the alphanumeric characters and is the main dataset we used to
train our models.

In an effort to understand these preliminary models, we ran a
t-Distributed Stochastic Neighbor Embedding (t-SNE) [15] model.
If m is the number of dimensions of the latent space, then this
model transforms the latent mean µ from Rm into R2 to enable
visualization. The t-SNE model [15] works by minimizing the KL
divergence between the conditional probability of pairs of samples
in the original 16-dimensional latent means and the conditional
probability of pairs of the 2-dimensional samples transformed by the
t-SNEmodel [15]. This allows us to visualize results with µ’s of more
than two dimensions, while maintaining some of the important
structure from the high-dimensional setting. We used this tool as an
additional heuristic measure of how well our model was training.

Figure 3: t-SNE [15] Embeddings for all characters [a-z,A-Z,0-
9] in the EMNIST dataset. These latent means were gener-
ated from a VAE with 16 latent dimensions.

Note that in Figure 3, there are pronounced clusters representing
the digits. For clusters representing letters, the distinction is less
clear, but this seems to indicate that the model could be learning
latent representations that encode semantic meaning for the letters.
We investigated this further in section 5.3 with various clustering
techniques on the latent character embeddings.

Once we trained our initial model, we fine-tuned it using individ-
ual handwriting samples. As a proof of concept, we demonstrated
that fine-tuning the network works with one of our group mem-
ber’s handwriting style. To collect this individualized data, we each

completed several grid-spaced 8.5 x 11" worksheets, as shown in
Figure 4. Each member completed 3 uppercase and 3 lowercase
worksheets, and all worksheets contained the 10 digits. This results
in 216 usable characters per user after preprocessing, done via an
automated image processing pipeline that we built. Note that while
we converted our handwriting samples to EMNIST [4] format, we
didn’t initially remove extra white space around our characters, as
recommended by [4]. This allowed us to preserve scale information
for users with smaller or larger handwriting. We removed the white
space in later experiments. Approximately 72% of the handwritten
characters are alphabetic and the remaining 28% are numeric. Our
scripts to processes the input sheets yielded 216 characters for at
least 1 user and a few less for other users due to a problem with
scanning quality. We expect re-scanning these sheets will resolve
the issue.

Figure 4: Sample data collection worksheets that were auto-
matically processed into EMNIST [4] format using OpenCV
[10].

4.2 Architecture search
Following our preliminary investigation, we performed a limited
architecture search for both InfoVAE [22] and BetaVAE [9] before
settling on a 2-layer convolutional encoder along with a similar
deconvolutional decoder network. We searched over networks with
latent dimensions ranging from 2 to 32, batch sizes between 1 and
4096, both the Adadelta and Adam optimizer (learning rate from
5e-3 to 1e-10).

4.3 Latent Traversal
Throughout training and experimentation we relied on latent tra-
versal to examine how a network is learning. In the case of networks
with only 2 latent dimensions, we simply iterated, in some preset
interval, along each dimension and plotted the reconstruction re-
sults along the two axes of a two-dimensional graph. An example
is shown in Figure 7. However, two latent dimensions were not
enough to encode the EMNIST dataset [4]. We therefore developed
a different way to visualize the networks evolution of weights and
biases.

For networks with more than two latent dimensions we recorded
both the class label c and the compressed representation zi , for each
i-th character’s n-dimensional representation seen in a training
epoch. After completing all steps through an epoch of training, we
computed the mean latent representation, zµ , for each character



William Hu, Sydney Thompson, and Nathan Tsoi

component-wise. We then visualized these latent mean representa-
tions via the decoder component of the Variational Auto Encoder.
We performed the same process on the validation set over each
epoch. An example output image is shown in Figure 5.

Figure 5: An example image generated frommean values via
latent traversal of a 32 latent-dimension InfoVAE [22] net-
work (validation set).

4.4 Style Loss
To determine a qualitative baseline for style transfer, we adapted the
Keras implementation 1 of style loss using the VGG19 architecture
[17]. Note that because the style loss function is formulated specifi-
cally for the VGG family of models, we decided not to incorporate
it into our VAE models.

4.5 Clustering
Many aspects of our current approach, from visualization of the
latent means to the implementation of the StyleApp, described be-
low, depend on labeled data and the ability to accurately classify
unlabeled samples. Our hypothesis was that clustering the disen-
tangled latent representation of a VAE should allow us to avoid
the need for labeled data and a supervised learning paradigm. We
also hypothesized that learning meaningful latent representations
corresponds with proximity of embeddings of characters of the
same class within latent space.

We experimented with both affinity propagation and k-means
clustering by encoding all inputs in our dataset and recording their
latent representations zi along with their character class ci . The zi ’s
were then clustered using both affinity propagation and k-means
(with k = 62). Clustering efficacy was determined by computing
1https://github.com/keras-team/keras/blob/master/examples/neural_style_transfer.py

the most common character in each cluster, assigning the cluster
that label, and comparing cluster members against their ground
truth label ci .

4.6 Network Fine-tuning
In an attempt to perform style transfer with very few handwriting
samples, we trained both BetaVAE [9] and InfoVAE [22] networks
with varied hyperparameters on the full EMNIST dataset [4]. We
then substantially decreased the learning rate and trained for be-
tween 1 and 10 epochs on our collected datasets. We experimented
with fine-tuning procedures by allowing weight updates to the
encoder and decoder as well as allowing weight updates to occur
in the decoder only.

4.6.1 Transform loss. To facilitate transferring between styles, we
attempted to use one of the methods outlined in [14]. That is, if we
consider a VAE networkX , denote the encoder as EX , the decoder as
DX , the latent distribution lX , samples from this latent distribution
zX ∼ lX , and reconstructions of the input x as x̂ . Let G be the
general character-reconstructing VAE trained on the EMNIST data
[4], S denote the fine-tuned style network, and let A be a linear
transformation where A : Rm → Rm wherem is the dimension of
the latent space. Our goal was to jointly train the style network S
and the linear transformation A so that we could use the EMNIST
[4] reference images and trained weights from the general network
G to construct new samples in the handwritten style. We initialized
S with the weights from G.

To train the style network S and transformation A, given an
example of character c from the training data xt and an example of
the same character from the handwriting sample xh , we computed
the following:

(lG )xt = EG (xt )

(zG )xt ∼ (lG )xt

(zS )xt = A(zG )xt

x̂t = DS ((zS )xt )

(lS )xh = ES (xh )

(zS )xh ∼ (lS )xh
x̂h = DS ((zS )xh )

Letting BCE(x,y) be the binary cross-entropy between x and y,
MMD(x, z) to be the Maximum Mean Discrepancy [22] between
samples x and distribution z, then to train we optimized the follow-
ing loss function, L:

Lrecon = BCE(x̂t , x̂h )

LVAE = BCE(xh, x̂h )

LMMDt = MMD(A(lG )xt ,N(0, 1))
LMMDs = MMD((lS )xs ,N(0, 1))
Lmeans = BCE(A(lG )xt , (lS )xs )

L = αLrecon + βLVAE + LMMDt + LMMDs + LLmeans



LLAMA: Learning Latent trAnsforMations for generative style trAnsfer

If this transformation A is invertible, then we could also use this
method to train multiple style networks and interpolate from style
to style by applying these transformations in sequence.

4.7 StyleApp
For the final portion of the project we created a web application 2,
shown in Figure 6, to demonstrate our method of style transfer. The
application accepts either physical-touch or mouse-pointer based
input on a 256-by-256 pixel square canvas. When the user draws
a character on the canvas, the canvas is rendered and converted
into an black and white image which is then re-scaled and passed
as input to a convolutional neural network, trained on the EMNIST
dataset [4] to a validation accuracy of 72%, assigning one of 62
character classes to the input image.

Below the drawing pad are two sliders: the top slider controls
the standard deviation associated with sampling from the VAE,
and the bottom slider controls the amount of style interpolation λ
between the handwriting sample and the reconstructions of each
character class’ latent mean zµ . The interpolated character’s latent
representation is then computed by the formula

z = zpad + λ
(
zµ − zpad

)
,

where zpad is the encoded representation of the drawn input. The
style-transferred output image is created by decoding the interpo-
lated z value. In addition, the characters in the center matrix can be
selected to allow the user to override the classifier’s prediction and
to visualize interpolation between two different characters. In prac-
tice, this smooths the input character towards the mean character
chosen in the matrix.

StyleApp is designed as a single-page static website. The entire
application runs in the browser, and the assets are provided as
static files for the browser to consume. There is no server-side
processing component. We use the TensorflowJS 3 library for client-
side operations on our trained networks. To do this we convert the
saved Keras models from training, both classifier and InfoVAE, to
TensorflowJS compatible JSON files, which are then loaded by our
webapp.

5 EXPERIMENTS
In our preliminary experimentation, we implemented a BetaVAE
[9] with β = 1. We tested both 2 and 16 latent dimensions. We
trained this model on both MNIST [12] and EMNIST [4]. As seen in
Figure 7, two dimensions were insufficient to adequately represent
all alphanumeric characters. In our architecture search, we inves-
tigated the effect of increasing the number of dimensions used in
the latent representation.

We evaluated our style-transfer approach by fine-tuning the
VAE trained on EMNIST [4] with 2 latent dimensions. Again, we
used the same network and hyper-parameters, except for batch size,
which was reduced to accommodate our much smaller style data
set of approximately 200 samples.

2https://styleapp.netlify.com
3https://tensorflow.org/js

(a) Input and reconstructed image.

(b) Input and latent mean image.

(c) Interpolation between the input and latent mean
image.

(d) Interpolation with variance.

Figure 6: Images from our style app. The interpolation im-
age is a mixture of the reconstructed handwriting sample in
(a) and the latent mean reconstruction of the character class
in (b).



William Hu, Sydney Thompson, and Nathan Tsoi

Figure 7: Reconstructions via latent traversal from a VAE
trained on EMNIST [4] with 2 latent dimensions.

5.1 Architecture Search
Following our preliminary experimentation, we performed a lim-
ited architecture search. This revealed that the best reconstruction
results could be obtained reliably with an InfoVAE [22] with 32
latent dimensions, trained over 40 epochs with a batch size of 2048
and Adam optimizer with a learning rate of 5e-3. It also appeared
the batch size is not crucial when training a network with this size
of compressed representation.

While we did have some success training both InfoVAE [22]
and BetaVAE [9] with 8 latent dimensions, learning was highly
unpredictable. As we made small, necessary changes to the loss
function, batch size, learning rate and initialization we saw signifi-
cant changes in the output of the network. These factors all played
a large role in convergence and therefore majority of the time this
network would not learn, collapse into (incorrectly) reconstructing
a single output image for all input.

5.2 Style Loss
After training our base networks, we built a VGG19 model [17] with
style loss to determine a qualitative baseline for style transfer. We
observed that the VGG19 model [17] with style loss could generally
combine the content and style from two images and interpolate
between them. As shown in Figure 8, the ’o’ at the end of the
progression is a combination of both the base and the style images.
The shape and thickness of the ’o’ suggests that the model is in fact
learning from both of the starting images.

5.3 Clustering
Our efforts to cluster the latent representations of the EMNIST
[4] data demonstrated the usefulness of our latent representations.

(a) Base image. (b) Style image.

(c) Progression of the combined image.

Figure 8: The VGG19 [17] model’s style and content extrac-
tors are tuned to produce realistic combined images. After
just a few iterations, the combined image shows properties
of both the base and the style images. While the overall
shape of the combined image is closer to that of the style
image, the weight of the character is between the base and
style images.

Clustering the raw images using k-means (k = 62) resulted in a clas-
sification accuracy of 48%, which served as a baseline for comparing
the usefulness of the latent representations. We then compared the
results of using k-means clustering on the latent representations
from both InfoVAE [22] and BetaVAE [9]. These had a classification
accuracy of 57% and 14%, respectively. For the InfoVAE [22], this
is an 18% improvement over the raw images, which indicates that
the latent representations are at least somewhat meaningful. It is
also worth noting that training the k-means clustering algorithm
on the full images required 24x24 = 576 inputs while training on
the latent representations required only 32-dimensional input - a
94% decrease in input size. This result indicates that clustering on
latent representations of images can be faster and potentially more
meaningful than clustering on raw images. In practice, the differ-
ence would be even more pronounced on datasets with much larger
images.

Our results from applying k-means to the latent representations
also suggest that the latent space generated from the InfoVAE [22]
was reasonably well-separable. By contrast, the low accuracy of
the BetaVAE [9] suggests that characters of the same class are not
mapped closely together in latent space. This is consistent with the
analysis in [22], indicating that the architecture of the BetaVAE
[9] suffers from learning that occurs only in the decoder instead
of creating meaningful latent variables from a properly trained
encoder. This demonstrates that the InfoVAE [22] was significantly
more effective in creating meaningful latent representations than
the BetaVAE [9] and therefore more effective towards our goal of
style transfer.

We see in Figure 9 that the digits are cleanly separated into dis-
tinct clusters. However, non-numeric characters are not as cleanly
separated among clusters, possibly due to the large data imbalance
in the EMNIST dataset [4]. Approximately 34% of the dataset is



LLAMA: Learning Latent trAnsforMations for generative style trAnsfer

Figure 9: A confusion matrix of the distribution of char-
acters within clusters for a k-means clustering algorithm
with k = 62. The y-axis denotes the most frequent character
within each cluster and the x-axis shows the character count
per ground truth label class. This matrix shows the break-
down of a subset of characters within a subset of the clus-
ters from the k-means clustering. The clusters not shown
contain insignificant numbers of samples in theBetaVAE [9]
clusters.

composed of the 10 digits and the remaining 52 characters are
represented in only 66% of the total samples.

We believe our results show promise in finding interesting or
even semantic (e.g. character classes in this case) points in latent
space in an unsupervised manner. While our unsupervised classi-
fication technique via clustering under-performs when compared
to the the CNN we trained (57% accuracy vs 72% accuracy), it does
not depend on labeled data, providing a method to learn semantics
in an unsupervised context. We hypothesize that more powerful
clustering techniques combined with a more powerful encoder and
decoder could yield better results, both on smaller datasets, like
EMNIST [4], and possibly even on datasets of greater complexity.

5.4 Network Fine-tuning
In our experimentation with various types of network fine-tuning
for both BetaVAE [9] and InfoVAE [22]. We found that updating
the weights in both the encoder and decoder was effective in terms
of reconstruction error. In this configuration, we were easily able to
update the encoder and decoder to accurately reconstruct a given
users’ input using only 200 samples in a single epoch of training.

We then attempted to maintain a similar latent representation
between the encoder trained on all of ENMIST [4] and the encoder
for a given user by disallowing weight updates to the decoder
during fine tuning. In this configuration the network was able
to reconstruct only a few characters classes. While this warrants
further exploration, it appears that reconstruction only succeeds in
this case when the sample for a user is close enough to the samples
in the EMNIST dataset [4] and can therefore be enocoded using the
pretrained encoder.

In practice, we found that image pre-processing was the most
important factor when encoding a user’s input. Cropping and the
thickening of lines in a sample image was required to make the
encoder work effectively.

(a)Mean reconstruction for each character class from the fine-tuned
network for an individual’s handwriting. The means are computed
from style-network latent representations of each character class.

(b) Mean reconstruc-
tion of ’J’ from the
general network.

(c) Sample of hand-
written character ’J’
from user.

(d) Mean reconstruc-
tion of ’J’ from the
style network.

Figure 10: The reconstructions of styled handwriting sam-
ples using the style network trained as described in Section
4.6.1. This grid is created by computing the mean latent em-
bedding for each class and then visualizing the reconstruc-
tion.

5.4.1 Transform loss. The style network successfully incorporated
artifacts of the sampled handwriting and took approximately 40
seconds to train on an Nvidia GeForce RTX 2070. Samples of each
character from the style network are found in the grid in Figure
10a.

We can see in Figure 10b, Figure 10c, and Figure 10d that the
styled network does learn artifacts of the handwriting. These ex-
amples of the character ’J’ from the styled network are much more
similar to the style target ’J’ than the original ’J’. This method cre-
ates samples that are slightly blurry, but shows empirically that the
network is learning handwriting style from the provided samples.

Unfortunately, as we can see in Figure 11, the linear transform
does not appear to learn a meaningful mapping between the gen-
eral VAE G and the style network S . This inhibited our ability to



William Hu, Sydney Thompson, and Nathan Tsoi

Figure 11: Mean reconstructions for the first 8 character
classes from the network fine-tuned on an individual’s writ-
ing. The mean is computed from latent representations of
each class from general networkG and transformed usingA
to latent space for style network S , then sampled and recon-
structed using DS .

test this method with style transform from one handwriting to an-
other. This collapse occurred even when the transform was trained
independently of the style network. This could suggest that the
transformation from the general latent space to the style-specific
latent space may not be well-approximated by a linear transforma-
tion. Future exploration in different network architectures for this
transformation may produce better results.

6 CONCLUSION
Our work allowed us to create meaningful low-dimensional rep-
resentations of EMNIST [4] images to facilitate generative style
transfer. This was most successful with online interpolation be-
tween handwritten digits in the StyleApp. Our application allows
users to smoothly interpolate between their own handwriting and
mean characters from the trained VAE. In practice, this technique
could be used to create more readable versions of a user’s hand-
writing while still maintaining elements of their personal style.

We also saw success in the inverse problem of generating hand-
writing styles. Though imperfect, with only a few examples of a
user’s handwriting, the network can generate characters that clearly
demonstrate artifacts of the user’s style. Future work can focus on
improving the input images to create cleaner reconstructions.

Our approach of clustering the latent representation to find
semantically meaningful points for interpolation shows promise
towards better interpretability of learned representations with more
than 2 dimensions, where simple traversal and visualization is not
possible. We hope to explore applications of this technique on other
datasets in future work.

7 FUTUREWORK
Our results in style interpolation and clustering show promise in
understanding the latent representations of handwritten characters
and provide interesting avenues for future work. One area that
deserves more exploration is the understanding of the latent space
generated from the encoders. As we have shown, there is bene-
fit to using unsupervised methods of representation learning to
compress and analyze high-dimensional input for generating new
data and interpolating between interesting points in latent space.
We can continue to improve this work by further investigating the
interpretability of low dimensional representations in larger, more
complex datasets, with the same fundamental approach but larger
and more powerful parameterizations of our technique.

This work could be further advanced by improving the networks
used to perform style transfer. Areas of improvement include refin-
ing the style network via better transformations from the general

network to the style network, incentivizing crisp edges for more
realistic reconstruction, and creating an interface for users to up-
load scans of their handwriting so that the StyleApp can perform
interpolation on larger handwriting sample sets.

REFERENCES
[1] Emre Aksan, Fabrizio Pece, and Otmar Hilliges. 2018. DeepWriting: Making

Digital Ink Editable via Deep Generative Modeling. In SIGCHI Conference on
Human Factors in Computing Systems (CHI ’18). ACM, New York, NY, USA.

[2] Gino Brunner, Andres Konrad, Yuyi Wang, and Roger Wattenhofer. 2018. MIDI-
VAE: Modeling Dynamics and Instrumentation of Music with Applications to
Style Transfer. arXiv:cs.SD/1809.07600

[3] Tian Qi Chen, Xuechen Li, Roger B Grosse, and David KDuvenaud. 2018. Isolating
sources of disentanglement in variational autoencoders. In Advances in Neural
Information Processing Systems. 2610–2620.

[4] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. 2017.
EMNIST: an extension of MNIST to handwritten letters. arXiv preprint
arXiv:1702.05373 (2017).

[5] J. . Crettez. 1995. A set of handwriting families: style recognition. In Proceedings
of 3rd International Conference on Document Analysis and Recognition, Vol. 1.
489–494 vol.1. https://doi.org/10.1109/ICDAR.1995.599041

[6] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. 2016. A learned
representation for artistic style. arXiv preprint arXiv:1610.07629 (2016).

[7] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol
Vinyals. 2018. Synthesizing Programs for Images using Reinforced Adversarial
Learning. arXiv:cs.CV/1804.01118

[8] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image style transfer
using convolutional neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2414–2423.

[9] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. 2017. beta-VAE:
Learning Basic Visual Concepts with a Constrained Variational Framework. ICLR
2, 5 (2017), 6.

[10] Itseez. 2015. Open Source Computer Vision Library. https://github.com/itseez/
opencv.

[11] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli
Song. 2017. Neural Style Transfer: A Review. arXiv:cs.CV/1705.04058

[12] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. ATT Labs [Online]. Available: http://yann. lecun. com/exdb/mnist 2
(2010).

[13] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly,
Bernhard Schölkopf, and Olivier Bachem. 2018. Challenging common assump-
tions in the unsupervised learning of disentangled representations. arXiv preprint
arXiv:1811.12359 (2018).

[14] Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. 2018. Deep
appearance models for face rendering. ACM Transactions on Graphics 37, 4 (2018).

[15] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[16] Omar Mohammed, Gerard Bailly, and Damien Pellier. 2018. Style Trans-
fer and Extraction for the Handwritten Letters Using Deep Learning.
arXiv:cs.CV/1812.07103

[17] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv:cs.CV/1409.1556

[18] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. 2017. Neural
Discrete Representation Learning. arXiv:cs.LG/1711.00937

[19] Ning XIE, Hirotaka HACHIYA, and Masashi SUGIYAMA. 2013. Artist Agent: A
Reinforcement Learning Approach to Automatic Stroke Generation in Oriental
Ink Painting. IEICE Transactions on Information and Systems E96.D, 5 (2013),
1134–1144. https://doi.org/10.1587/transinf.e96.d.1134

[20] Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. 2017. Towards k-
means-friendly spaces: Simultaneous deep learning and clustering. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70. JMLR. org,
3861–3870.

[21] Ya-Jie Zhang, Shifeng Pan, Lei He, and Zhen-Hua Ling. 2018. Learning latent
representations for style control and transfer in end-to-end speech synthesis.
arXiv:cs.CL/1812.04342

[22] Shengjia Zhao, Jiaming Song, and Stefano Ermon. 2017. InfoVAE: Infor-
mation Maximizing Variational Autoencoders. CoRR abs/1706.02262 (2017).
arXiv:1706.02262 http://arxiv.org/abs/1706.02262

http://arxiv.org/abs/cs.SD/1809.07600
https://doi.org/10.1109/ICDAR.1995.599041
http://arxiv.org/abs/cs.CV/1804.01118
https://github.com/itseez/opencv
https://github.com/itseez/opencv
http://arxiv.org/abs/cs.CV/1705.04058
http://arxiv.org/abs/cs.CV/1812.07103
http://arxiv.org/abs/cs.CV/1409.1556
http://arxiv.org/abs/cs.LG/1711.00937
https://doi.org/10.1587/transinf.e96.d.1134
http://arxiv.org/abs/cs.CL/1812.04342
http://arxiv.org/abs/1706.02262
http://arxiv.org/abs/1706.02262

	1 Abstract
	2 Introduction
	3 Related Work
	3.1 Handwriting Style Transfer
	3.2 Model Selection
	3.3 Unsupervised Learning of Semantics from Latent Representations
	3.4 Style Loss

	4 Method
	4.1 Preliminary Exploration
	4.2 Architecture search
	4.3 Latent Traversal
	4.4 Style Loss
	4.5 Clustering
	4.6 Network Fine-tuning
	4.7 StyleApp

	5 Experiments
	5.1 Architecture Search
	5.2 Style Loss
	5.3 Clustering
	5.4 Network Fine-tuning

	6 Conclusion
	7 Future Work
	References

