
Style Transformation on Human Faces using Feedforward and
Generative Methods

Annie Gao
annie.gao@yale.edu
Yale University

Valerie Chen
v.chen@yale.edu
Yale University

Yichao Cheng
yichao.cheng@yale.edu

Yale University

ABSTRACT
Human faces are varied in nature and in styles, but often structurally
similar. Recent approaches using feedforward and generative meth-
ods have demonstrated photo-realistic capabilities for artistic style
transfers [3, 4, 8], which we believe hold potential for human facial
feature transformation. We investigate the FastCNN, Cycle GAN,
and Style GAN architectures to transform an input image to an
‘aged’ version of the image. We made various modifications includ-
ing changing the loss network and loss weights, training data set,
and adding a mapping network respectively to each architecture
to handle the transformation of a new input image. The results for
each architecture were varied. We present a qualitative analysis
of each method’s output transformation and example transformed
images. Finally, we highlight some benefits and drawbacks of each
method.

ACM Reference Format:
Annie Gao, Valerie Chen, and Yichao Cheng. 2019. Style Transformation on
Human Faces using Feedforward and Generative Methods. In Proceedings
of ACM Conference (BIM Final Project). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The main goal of this project is to explore automatic transformation
of features in human face images for the purposes of interactive
applications and demonstrations. The project is motivated by a
recent surge in popularity of apps such as FaceApp and Snapchat.
These apps contain filters which are able to perform AI face editing
to transform in real-time a current image of a person to an edited
version, whether it be aging, changing genders, or enhancing smiles.
Many online posts hypothesize that these apps use some version
of generative adversarial architectures, so we are interested to see
if we can build this proprietary technology ourselves.

Facial feature transformation is a subset of a larger class of work
called style transfer. The goal of style transfer is to preserve the
content of one image in the style of another by minimizing loss
functions concerning content and style reconstruction, thereby
preserving high-level features of both image classes. In this paper,
we explore mechanisms to accomplish this transformation using
both feedforward networks and generative adversarial architectures

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BIM Final Project, Fall, 2019
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

and gather qualitative survey results on the transformed results of
each architecture.

2 RELATEDWORK
The goal of neural style transfer is to use deep learning techniques
to transform images of one style into another style. Fundamentally
this is posed as an optimization problem to minimize the style and
content distances between the two images. Prior work that relate to
style transfer have used feedforward and generative adversarial net-
works. The three types of architectures that we will be investigating
are [3, 4, 8]. Each method presents its own unique contributions
towards style transformations, which we briefly highlight below.

The first method is a feedforward architecture, FastCNN [3],
which introduced a pipeline using perceptual loss functions to per-
form artistic style transfer in real-time. One key contribution is
their use of VGG16, pretrained on ImageNet, as a deep loss network
that already contains perceptual and semantic information needed
to compute content and style losses between output and target
images. Using activation outputs from this loss network, they com-
pute content and style losses from feature reconstruction outputs,
which are used to train a feedforward image transformation net-
work to preserve the content of the input image while transferring
the artistic style of the target image in real-time.

The second architecture is the Cycle GAN [8], which simulta-
neously trains two sets of generative adversarial networks using
unpaired training images from source domain X and target domain
Y . The novelty of the approach lies in the introduction of a cycle
consistency loss, which enforces that given input images from X ,
the resulting images should, after transformation first via one gen-
erator to Y and then via the other generator back to X , look similar
to the original input images from X . This architecture is promising
for style transfer, for the use of ResNet [2] in the generator can
effectively extract and transform features, and the cycle consistency
constraint can ensure that the main and definitive structure of a
person’s face remains unchanged while feature transformations
alter the style. The freedom of not needing paired training data does
not come for free, however, as implicitly, requirements for style
consistency among images in each domain have become higher.

A third architecture that we will explore is the Style GAN [4].
Style GAN is the only architecture of the three that specifically
presented results on faces. The novelty of the architecture is in
the style-based generator to better control the image synthesis
procedure, while keeping the rest of the set-up the same as prior
work on generative adversarial networks. The style-based generator
uses a multi-layer perceptron to transform a latent code to an
intermediate latent space that can be adapted to different styles,
so essentially they learn a mapping from a latent space to style
transform rather than image directly to style transform. The main

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

BIM Final Project, Fall, 2019 Annie Gao, Valerie Chen, and Yichao Cheng

contribution of this architecture is the ability to mix style between
two images from high-level aspects to coarse features. However,
Style GAN is limited by its ability to do style transformation in that
it can only transfers styles within the space of the latent dimension,
so only generated images can be ‘mixed’.

3 METHOD
We propose to explore three different recent architectures that have
been demonstrated to be able to accomplish style transfer through
preliminary work for the applications of facial feature transfor-
mation. For each method, we present a workflow to transform a
given input image with respect to an attribute such as age or gender.
We train each method on the CelebA dataset [5], which contains
over 200K faces and 40 binary attribute annotations for each image,
suitable for style transfer across a wide variety of facial features.
In addition, Cycle GAN and Style GAN also used the IMDb-Wiki
dataset [6] that contains 500k+ face images, where the numeric
age labels allowed for the construction of more consistent training
datasets where old and young are measured quantitatively.

3.1 Data Processing
From the CelebA dataset [5], we only extracted images that were
marked as young, without glasses, and without hat, so as to remove
partial facial occlusions. Then, in order to increase the chances
of style transfer and decrease the effects of background clutter,
we cropped the images to only contain a single face, as detected
by a convolutional face detector network. We also resized all the
face images to 256x256 pixels, normalized the pixel values, and
loaded the resulting dataframes into separate training, validation
and testing files for faster loading on subsequent runs. We pre-
processed the IMDb-Wiki dataset [6] to only exact images that only
contain a single face (via filtering with a threshold) and have valid
date of birth and photo taken date. Then, we computed the age for
the face in each image from date of birth and when the photo was
taken to extract age <= 30 years old as young and age >= 60 years
old as old.

3.2 Fast Style Transfer
One approach is to use two feedforward convolutional neural net-
works, an image transformation network and a pretrained deep
convolutional model that serves as a loss network during train-
ing. Instead of using VGG16, an image classification network, we
used VGGFace, a deep facial recognition network pretrained on
the Labeled Faces in the Wild and Youtube Faces dataset, for an
exploration of its impact on the content and style loss functions,
which we will discuss later. We adapt the image transformation net-
work architecture proposed by [3], and experiment with different
hyperparameter configurations to test the effects on our output im-
ages. We are interested in investigating whether or not this transfer
of artistic style can be applied to transferring stylistic attributes
relating to facial features such as age.

Figure 1 shows the abstracted process of generating images. The
input image also serves as the target content image, which along
with the target style image, is fed through the selected activation
layers of the loss network to produce target values for the loss
functions. As images are generated by the image transformation

Figure 1: The proposed approach to using feedforward net-
works to perform style transform given an input image and
a style image.

network, they are also passed through the loss network to produce
content and style losses, and the training process minimizes the
weighted sum of all the computed losses.

To generate loss metrics, we can extract activation outputs for
specific layers J from the pretrained VGGFace model ϕ. As sug-
gested by [3], we also used the activations from

J = {relu1_2, relu2_2, relu3_3, relu4_3}

to compute style reconstruction and feature reconstruction losses
in order to train the image transformation network.

The feature reconstruction loss encourages the output image
to be similar to the target image in terms of content and spatial
structure, but because the distance is computed over feature rep-
resentations instead of the original image pixels, it does not force
the pictures to match exactly. The feature reconstruction loss [3] is
computed as the squared, normalized Euclidean distance between
the feature representations of the generated image ŷ and the target
image y in layer j of the VGGFace model:

l
ϕ, j
f eat (ŷ,y) =

1
CjHjWj

∥ϕ j (ŷ) − ϕ j (y)∥
2
2

The style reconstruction loss encourages the output image to be
similar in style to the target image. It preserves stylistic features
from the target image but not its spatial structure. To compute
the style reconstruction loss, we first calculate the Gram matrices
of the predicted and target images, which helps to measure the
uncentered covariance of the features and thus provides insight on
which features tend to activate together. The Gram matrixGϕ

j (x) of
an image x uses the activations of the jth layer of the loss network
ϕ, denoted ϕ j (x). Let ψ = ϕ j . Then

G
ϕ
j (x) =

ψψT

CjHjWj

and the style reconstruction loss is the squared Frobenius norm of
the Grammatrices of the predicted and target images [3], computed
as follows:

l
ϕ, j
style (ŷ,y) = ∥G

ϕ
j (ŷ) −G

ϕ
j (y)∥

We now explain the choice of VGGFace over VGG16 as a loss
network. For feature reconstruction and content loss, an image
classification network is trained to preserve the classes of objects

Style Transformation on Human Faces using Feedforward and Generative Methods BIM Final Project, Fall, 2019

present in the content image. Our goal is the manipulation of facial
features on human faces while the subject in the picture is still
recognizable. Using image classification as a loss network could
maintain a classification of "human face," but this could be too broad
for recognition purposes. Instead, a facial recognition network such
as VGGFace would help maintain the unique structure of each
person’s face as the style of individual features is changed. The
other benefit of using a facial recognition network is that instead
of transferring the artistic style of object classes found throughout
the image, we focus on the style of tu features of the target image,
thus also reducing the effect of background noise in the style target
image.

Using the loss functions mentioned above, we train a convolu-
tional neural network model to learn the image transformation
network fW , built according to the architecture summarized in the
following table:

Layer Activation Size
Inputs (256, 256, 3)

32×9×9 conv, stride 1 (256, 256, 32)
64×3×3 conv, stride 2 (128, 128, 64)
128×3×3 conv, stride 2 (64, 64, 128)

Residual block, 128 filters (64, 64, 128)
Residual block, 128 filters (64, 64, 128)
Residual block, 128 filters (64, 64, 128)
Residual block, 128 filters (64, 64, 128)
Residual block, 128 filters (64, 64, 128)

64×3×3 transposed conv, stride 2 (128, 128, 64)
32×3×3 transposed conv, stride 2 (256, 256, 32)

3×9×9 conv, stride 1 (256, 256, 3)
Table 1: Image transform network architecture

Following the architecture proposed in [3], each convolutional
layer in the network is followed by batch normalization and relu
activation. Each residual block comprises a 3x3 convolutional layer,
followed by batch normalization, relu activation, another 3x3 con-
volutional layer, and another batch normalization layer. The down-
sampling in the network adds computational efficiency and in-
creases the effective receptive fields of the convolution, and the
use of transposed convolutional layers in the upsampling allows
the upsampling function to be learned as the network is trained.
The FastCNN pipeline is implemented in Keras using a Tensorflow
backend.

3.3 Cycle GAN
There are three key aspects to the technical approach of Cycle GAN:
network structure, loss function, and training data.We explain these
in turn below.

The basic network structure is shown in Figure 2, where genera-
torG generates fakeY images given input fromX and discriminator
DY scores for a given image how likely it is that the image is fromY .
F andDX are defined symmetrically. The two generator and discrim-
inator pairs are implemented identically. The generator has three
parts, which are the encoder consisting of 3 down-sampling layers
that extract features, the transformer consisting of 9 residual blocks

Figure 2: The proposed network structureimplementation
for Cycle GAN

that learn feature transformation, and the decoder consisting of 2
fractionally-strided (aka. transpose convolutional) convolutional
layers that perform inverse convolution operation to map features
to pixels by filling in the details of a full image. The discriminator
consists of 5 down-sampling convolutional layers that extract fea-
tures unique to images in each domain. Additionally, techniques of
instance normalization [7] and reflection padding are also used in
the implementation.

The novelty of Cycle GAN resides in the idea of cycle consistency,
where the two generators G and F are viewed as inverses of each
other so that G ◦ F ≡ F ◦ G ≡ I , i.e., the distribution of images
under map G ◦ F should be similar to the distribution of images in
the domain Y , and similarly for the other direction as well. This
perspective is incorporated in the full objective loss function, which
is

L(G, F ,DX ,DY) = LGAN (G,DY ,X ,Y) + LGAN (F ,DX ,X ,Y)

+ λLcyc (G, F)

where the first two terms are the standard GAN losses (including
the identity loss and the adversarial loss) as in [1] and the third
term enforces the cycle consistency constraint through measuring
distance in the L1-norm as follows:

Lcyc (G, F) = Ex∼pdata (x)[| |F (G(x)) − x | |1]

+ Ex∼pdata (y)[| |G(F (y)) − y | |1]

Here λ is a parameter used to adjust the relative importance of the
cycle consistency loss, and the loss functions used in our imple-
mentation are L2-norm (the minimization of which is equivalent to
minimizing mean square error) and L1-norm (the minimization of
which is equivalent to minimizing mean absolute error).

Then during training, in order to update the generators via both
the adversarial loss and the cycle consistency loss, we define two
composite models, G → DY → F , and F → DX → G. In the
composite model G → DY → F , generator G is updated via four
losses: the adversarial loss | |1 − D(G(X))| |2 (L2 norm), the identity
loss | |Y−G(Y)| |1 (L1 norm), the cycle consistency loss in the forward
direction | |X − F (G(X))| |1 (L1 norm), and the cycle consistency loss
in the backward direction | |Y − G(F (Y))| |1 (L1 norm). Similarly,
generator F is updated via the composite model F → DX → G.
Note here that for simplicity in notations, we usedX and Y to mean
the batch of images drawn from the distribution of images in each
domain respectively, as in the above Lcyc definition.

BIM Final Project, Fall, 2019 Annie Gao, Valerie Chen, and Yichao Cheng

The final key aspect is training. After processing the datasets
as detailed in 3.1, we trained four kinds of models. The first kind
was trained using the young and old datasets (male and female)
from the CelebA dataset, with relative loss weights for the four
losses (adversarial loss, identity loss, cycle consistency loss in the
forward direction, cycle consistency loss in the backward direction)
being [1, 5, 10, 10]; the second kind was trained using the young
and old datasets (male only) from the IMDb-Wiki dataset, with
relative loss weights being [1, 5, 10, 10]; the third kind was trained
using the young and old datasets (male only) from the IMDb-Wiki
dataset, with relative loss weights being [5, 1, 10, 10]; the forth kind
was trained using the young and old datasets (male only) from the
IMDb-Wiki dataset, with relative loss weights being [5, 5, 10, 10].
Note that these loss weights are relative values that will then be
normalized in the Tensorflow backend implementation. The first
model was trained on a total iteration of 20,000+ images, and each
of the other three models was trained on a total iteration of 10,000+
images.

3.4 Style GAN
Style GAN [4] allows for control over style features of an image
through manipulation of the latent code. Each image that is gener-
ated by the Style GAN generator is associated with a source latent
code. Style GAN mixes the ’styles’ of two different images, which is
the intermediate latent code, by injecting an affine transformation
of the two different styles at different layers of the upsampling
process. Specifically, ’style’ is fed into the adaptive instance nor-
malization (AdaIN) modules after each convolution layer in the
synthesis network. The AdaIN operation scales and biases the im-
age feature xi towards style y = (ys ,yb) using the following:

AdaIN (xi ,y) = ys ,i
xi − µ(xi)

σ (xi)
− yb ,i

We propose to utilize this mixing functionality for the purpose
of style transformations such as changing the age or gender of
face by leveraging the control of the latent code which housed in
the generator network. The set-up of the Style GAN follows that
presented in [4].

Figure 3: Example generated and mixed images from our
own trained Style GAN. The image at the bottom right cor-
ner is an example of mixing the two generated images on
the top and left.

To achieve style mixing, the model should be trained on data
which captures variation in the attribute we are interested in. For
example, when doing style transformation on age, a variety of

ages should be represented in the training data that the Style GAN
encounters throughout the training process. Figure 3 demonstrates
through an example style mixing using our own trained Style GAN
network on an image size of 64x64. We found that a limitation
of training our own network is that we would spend all limited
computational power on basic training, which does not have the
capability to do style transfer on an input image. To progressively
scale up to the final size of 1024x1024, the original Style GAN paper
mentions that it would take over one month of training on a single
GPU. Thus, for the rest of this paper, we consider a pre-trained
Style GAN model on 256x256 images with a latent dimension of
512.

Figure 4: The proposed approach to utilize Style GAN for im-
age feature transformation. The key contribution is not the
training of Style GAN but mapping of a new, real image to
the latent space of the generator.

Given a new input image, Figure 6 presents a high-level overview
of the overall pipeline using the pre-trained Style GAN model. The
input image and target attribute are provided by the user. In this
project, we propose a perceptual loss method to find an appropri-
ate latent code for the new input image, which allows us to then
mix image styles using the pre-trained generator. We pose this
perceptual loss as an optimization problem:

min
t

MSE(ϕ(s),ϕ(G(t)))

where s is the input image, t the predicted latent code, G(x) the
generated image given latent code x , and ϕ(x) maps an image to
visual features from VGG16. Specifically the layers of VGG we
extracted to make up the function ϕ(x) are the 3rd, 8th, 15th, and
22nd which correspond to the ReLU outputs. The pipeline for the
perceptual loss method is as follows:

(1) Guess latent code
(2) Use generator to generate image given latent code
(3) Extract image features using a forward pass through ϕ(x)
(4) Calculate MSE Loss
(5) Backpropagate loss through to input latent code, holding all

other parameters fixed
(6) Repeat from step (2) for fixed number of steps or until error

sufficiently small
This training process was optimized using the Adam optimizer with
a learning rate of 1 and a criterion of standard mean squared error.
All code for Style GAN was implemented in Pytorch. Each new

Style Transformation on Human Faces using Feedforward and Generative Methods BIM Final Project, Fall, 2019

input image would have to be processed in such a way to find the
corresponding latent code in the latent space of the generator.

We consider a fairly simple way to mix the latent code of the
input image with one satisfying the target attribute. For example,
if we are interesting in ’aging’ the input image, we should select
an image of an older person to do style-mixing on. One method
to select such an image is to manually record the latent code of
an image that one would consider ’old’. Another method could be
to use an age detection network on many generated images and
select the latent code of an image that has an age above a certain
threshold. For simplicity, we used the first method for this project.
At each upsampling level, the generator randomly selects from the
set of available styles to inject into the AdaIN module.

3.5 Evaluation
To analyze the training process, we compare learning curves from
each of the different network architectures to assess training process
stability. While this metric does not directly inform us about image
quality, it will be interesting to observe the difference between
training a feedforward network and generative adversarial network.

To analyze the transformed images, we evaluate the results
through visual analysis for how realistic the image is. We surveyed
other students with a few questions that help us understand in what
cases each architecture does better and identify potential directions
for improvement. Questions we asked include:

(1) Given these images transformed by each network, rate each
on a scale of 1 to 5 how realistic the face is

(2) Given original and transformed pictures, guess the age of
the people pictured. We can then measure the difference
in estimated ages and see how effective our method is for
various age groups.

4 RESULTS
4.1 Fast Style Transfer
To evaluate the output produced by each network, we used three
unaltered content images and one unaltered style image, as shown
in row 1 of Figure 5.

As a baseline, we trained an unmodified implementation of the
feedforward network presented in [3], with the results in row 2 of
Figure 5. As expected, the style transfer seems to have been applied
uniformly to the input images, with "wrinkles" transferred every-
where in the faces without any particular localization or direction.
It also did not significantly change the content of the images. As
a sanity check, we also trained a model on a smaller learning rate
of 0.0001 instead of 0.001, and a model with a greater style weight
of 1.5 instead of 0.5. An additional epoch was added to train the
model with lower learning rate, since after two epochs, the training
loss had not appeared to stabilize. As shown in rows 3 and 4 of
Figure 5, this did not improve our results, since the pictures also
do not modify the facial structure of the subjects, and instead just
blanket the pictures in white, which we hypothesize to be from the
light illuminating the face of our original target style image. Note
that the reconstruction of the target image in row 4 lacks content
and style precision, hinting that simply adjusting content and style
weights would not be productive. With hyperparameter tuning on
a network trained with a VGG16-based loss largely ruled out, we

Figure 5: Row1: 3 original content images, target image. Row
2: Unmodified architecture. Row 3: Smaller learning rate.
Row 4:More style weight. Row 5:Modified loss network (VG-
GFace). Rows 2-5 also have a graph of training losses over
epoch steps.

trained another network that used VGGFace as its loss network.
The results are shown in row 5 of Figure 5. Although the edges of
the picture are noisy, this set of results is the only one so far with
noticeable change in the structure of individual facial features. We
think the lower image quality of the pictures may be due to training
issues from the ethnic discrepancies between the content and style
images, as well as the biased demographics present in our dataset.
To address this, we trained another model using the target style
image shown in row 1 of Figure 6, which produced the results in
row 2 of Figure 6. Here, the identity reconstruction of the target
image appears more convincing than that of row 5 in Figure 5, and
the generated output images are also less noisy. The illumination in
the target image’s face also transfers to specific, matching features
on the input images, although the hairline, face shape, and color
scheme are also forced upon the input images, which detracts from
their realism.

4.2 Cycle GAN
Overall, the trained Cycle GANmodels did not produce very promis-
ing results, though we made some interesting discoveries when
comparing results from the four models that were trained differ-
ently. From Figure 7, we see that the fake old images generated by
the first model are almost replicas of the original input images, ex-
cept for some color variations, and there was no sign of aging. The
images generated by the second model also did not have obvious

BIM Final Project, Fall, 2019 Annie Gao, Valerie Chen, and Yichao Cheng

Figure 6: Row1: 3 original content images, target image. Row
2: Output of first row images from network trained with VG-
GFace loss, along with graph of training losses over epoch
steps.

Figure 7: The first column has the original images. Column
2:5 correspond to the fake old images generated by the best
model trained in each of the four ways respectively.

signs of aging, but there was a greater level of image transforma-
tion. The images generated by the third model are the most coarse
of all, as shown by the large pixelated regions displaying highly
exposed colors. The images in the last column generated by the
forth model, however, showed some promising signs. Most parts
of each image are reconstructed well despite some pixelated spots,
and compared with the original images, these faces look a little
older even just from the overall color scheme. We also plotted the
loss and accuracy graphs for each of these models, which all shared
the general trend of those shown in Figure 8.

Figure 8: Loss and accuracy graphs plotted using data ob-
tained from training the first model.

From the accuracy plots, we see that the models did not converge,
and yet from the loss plots, there was a seemingly promising im-
provement. We suspect that mode collapsing might have happened,
where with the high relative weight on the two cycle consistency
losses, the generators learned the easiest way to minimize that
loss, which is to output a near-identity map. This prompted us to
experiment with changing the relative loss weights as we did in
training the third and forth model.

The results in Figure 7 to a large extent corroborated with our
guess, although we will need more systematic experiments to fur-
ther confirm it. By decreasing the relative weights of the cycle
consistency losses when training the forth model, we saw a notice-
able increase in image transformation, and there was also a tiny
sign of aging. By decreasing the relative weight of the adversarial
loss and increasing the relative weight of the identity loss when
training the third model, we saw the greatest level of image trans-
formation from the results, given that the last three models were all
trained under a similar number of training samples. Additionally,
we also saw that the underlying color schemes of images in the
last two columns are similar. There is reason to believe that with
more training, these two models will produce more realistic aging
results.

On the other hand, changing the training dataset from the first
model to the second model did not see a noticeable improvement in
performance. This could be due to the lack of consistency in both
training sets, where images in each domain have completely differ-
ent backgrounds, colors, etc. Overall, besides insufficient parameter
and model tuning, we think the failure of Cycle GAN applied to
style transformation was to a large extent due to the highly noisy
training data, whose lack of a uniform style made it very hard for
the GAN networks to learn the style transformation at the facial
feature level.

4.3 Style GAN

Figure 9: The top and bottom row correspond to two exam-
ple evolution over multiple iterations of optimized faces.
(Left-most) Image generated by initial latent code guess.
(Right-most) Target image tomatch. The second image from
the right is the final optimized image.

Overall, the perceptual loss optimization process was fairly suc-
cessful in finding a latent code whose generated image was percep-
tually similar to the target image. As shown in Figure 9, even if the
initial latent code guess corresponded to an image of the opposite
gender, the eventual optimized image would look like the correct
gender. In general the optimized photo would capture the correct
face shape, hair color, and whether or not the real photo had a

Style Transformation on Human Faces using Feedforward and Generative Methods BIM Final Project, Fall, 2019

smile. However, it is lacking in the ability to mimic some finer grain
details. For example in the top row of Figure 9, the optimized photo
lost some of the definition in the hair and eyes and the bottom row
was unable to match the exact face expression made. Perhaps this
is because the faces could be more closely aligned with the training
images in terms of cropping or because the size of image we are
using is 256x256 which would not capture as granular details as a
larger 1024x1024 image.

Figure 10: Loss curve for perceptual similarity optimizing.
After about 200 iterations, the loss reaches a (local) mini-
mum. Perhaps with additional hyperparameter tuning we
would achieve better results.

Figure 11: For each set of four images: the top left image is
the input image, the top right image is the generated image,
the bottom left is the selected target attribute image, and the
bottom right is the mixed image.

Figure 11 demonstrates two examples of faces after performing
style mixing. We found that there is substantial variability in terms
of the quality and how realistic the generated face outputted from
style mixing were. In some cases, more features from the original
image is preserved that in other cases. This might be due to some
underlying compatibility between the two latent codes, which is
difficult to disentangle in the generator. An additional factor could
be the variability in goodness of perceptual reconstruction of the
input image, which will have downstream effects on the style-
mixing.

4.4 Qualitative Comparison
We conducted a survey among 17 participants, consisting of two sets
of original and modified images for each of the three architectures.
Each set of images was accompanied by the following questions:

(1) Guess the age of the original face?
(2) On a scale of 1 to 5 (1: not realistic at all, 5: very realistic),

how realistic is the modified face?
(3) Guess the age of the modified face?
We dropped one extreme outlier response fully from the evalua-

tion and analyzed the responses from remaining 16 people. For each
of the three network architectures, we calculated the average of the
difference between the perceived age of the modified face and the
perceived age of the original face. We also calculated the average
realism rating, with the results shown in Table 2. We found that
Style GAN had the highest average increase in perceived age. Given
that Style GAN had been designed for the purpose of mixing faces,
this result was in line with our expectations. Additionally, Cycle
GAN had the lowest average increase in perceived age. This was
expected because we were not able to achieve age transfer with the
architecture so there would not be a noticeable difference between
age difference. Finally, FastCNN had the lowest average realism
rating. This is perhaps because FastCNN was primarily designed
for artistic style transfer and so the output image was not optimized
for realism.

Architecture Average Increase Average Realism
in Perceived Age Rating (1-5)

FastCNN 20.196875 1.65625
Cycle GAN 0.65625 3.5625
Style GAN 30.9578125 2.78125

Table 2: Evaluation Results comparing Style Transfer Archi-
tectures

5 CONCLUSION AND FUTUREWORK
Overall, we found that the main benefits of feedforward methods
such as FastCNN was the speed and relative ease to train. Genera-
tive architectures, Cycle GAN and Style GAN, required substantially
more computational time and power. Due to these limitations on
generative architectures, we found mixed results in terms of the
aging capabilities. However, generative methods outperform feed-
forward methods in terms of their power to generate a variety of
images. This provides Style GAN with the capability to mix styles
of images easily and Cycle GAN to learn transformations between
unpaired images. Generators have latent spaces from which they
sample new images over a diverse space while the feedforward
method only accepts one target style per trained network. Specifi-
cally, FastCNN tries to fit all input images to a very specific structure,
which leads to less realistic outputs. In the future, results on each
architecture might be improved if we improve the architecture’s
capability to disentangle style features. This might be done on the
model perspective or the training data end. Additionally, since our
goal is to build interactive applications, we might want to incorpo-
rate a metric for photorealistic outputs to encourage the model to
produce more convincing outcomes.

REFERENCES
[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

BIM Final Project, Fall, 2019 Annie Gao, Valerie Chen, and Yichao Cheng

[3] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-
time style transfer and super-resolution. In European conference on computer vision.
Springer, 694–711.

[4] Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator architec-
ture for generative adversarial networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 4401–4410.

[5] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2018. Large-scale celeb-
faces attributes (celeba) dataset. Retrieved August 15 (2018), 2018.

[6] Rasmus Rothe, Radu Timofte, and Luc Van Gool. 2015. DEX: Deep EXpectation of
apparent age from a single image. In IEEE International Conference on Computer
Vision Workshops (ICCVW).

[7] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2016. Instance normaliza-
tion: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022
(2016).

[8] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Proceedings
of the IEEE international conference on computer vision. 2223–2232.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Data Processing
	3.2 Fast Style Transfer
	3.3 Cycle GAN
	3.4 Style GAN
	3.5 Evaluation

	4 Results
	4.1 Fast Style Transfer
	4.2 Cycle GAN
	4.3 Style GAN
	4.4 Qualitative Comparison

	5 Conclusion and Future Work
	References

