
Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Climb a-GAN: Generation of Rock Climbing Problems
Cove Geary∗

cove.geary@yale.edu
Yale University

New Haven, Connecticut

Joseph Valdez
joseph.valdez@yale.edu

Yale University
New Haven, Connecticut

Figure 1: Example of a climber using a Moonboard

ABSTRACT
Many rock climbing gyms have adopted a new type of rock climbing
wall: the MoonBoard. The MoonBoard is a standardized interactive
training wall of 11 x 18 holds that are identical in each gym. The
MoonBoard website provides a space for users to create new custom
paths, upload them, and even rate other paths. Using an ACGAN, it
is possible for a user to be able to input a difficulty for a desired rock
climbing path and have it generate a new suggested path according
to that difficulty that is compatible with the MoonBoard. Current
GitHub projects for MoonBoards generate a random path and then
classify the difficulty, so this would be approaching it in reverse.
By generating a path based on a given difficulty, it will be easier for
rock climbing users to find a path they would be able to attempt
(and enjoy). The classifiers in the ACGAN are the different levels
of difficulties of the rock climbing routes. The ACGAN will output
an image of a MoonBoard with the starting holds circled in green,
the intermediate holds circled in blue, and the ending holds circled
in red.

KEYWORDS
datasets, CGAN, conditional GAN, path generation
∗Both authors contributed equally to this research.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/0000000.0000000

ACM Reference Format:
Cove Geary and Joseph Valdez. 2019. Climb a-GAN: Generation of Rock
Climbing Problems. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/0000000.0000000

1 INTRODUCTION
Our project is motivated by two challenges in indoor rock climbing:
generating new climbing paths (route- or problem-setting); and
understanding what makes a particular problem challenging and
fun.

Although the full space of possible mediums (wall size, arrange-
ment, etc.) for a climbing problem is huge, perhaps the best candi-
date medium for starting to approach this algorithmically would be
the MoonBoard. The MoonBoard is a standardized bouldering wall
located in gyms throughout the world, such that every MoonBoard
has the same features for hands and feet (holds) in the same place,
arranged in a 11x18 grid. Climbing paths can be customized and
created by users on an online community. The MoonBoard website
hosts an online community where users can create problems, as-
sign them a difficulty, and share them publicly for others to view. A
problem on the MoonBoard is defined as a sequence of holds along
the grid. Each problem is given a grade (difficulty level) and a rating
(0-3 stars). There is even an app where users can upload paths so
there exists a healthy amount (many thousands) of accessible data!

However, since users currently have to manually design paths
and rate their difficulty, we were hoping this process could instead
be streamlined with the aid of technology. It would be incredibly
helpful if instead of creating your own path or even searching
through thousands of paths to find one that matches your profi-
ciency with bouldering, a user could simply input their desired
difficulty and have a path automatically generated for them.

2019-12-11 22:52. Page 1 of 1–6.

https://doi.org/10.1145/0000000.0000000
https://doi.org/10.1145/0000000.0000000

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Geary and Valdez

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

This might be able to be achieved through a GAN, or Generative
Adversarial Network. GANs are given training data, then using two
networks working against each other, eventually learns to generate
new data similar to that of the training set. The two neural networks
are referred to as the generator and the discriminator. The job of
the generator is to learn to generate new data capable of fooling
the discriminator into thinking it was from the initial training
data. The job of the discriminator is to be able to determine where
the generated data is "real" or "fake", or whether the data is from
the initial training data or fabricated by the generator. After many
iterations of this training, the generated data should so similar to the
training data that it fools the discriminator. The model architecture
is shown in the figure below.

Figure 2: Model of a GAN from
https://pathmind.com/wiki/generative-adversarial-
network-gan

Using this method, we could train a GAN using the thousands
of user-created MoonBoard problems with the intention of being
able to generate new problems similar (and equally traversable) to
the problems in the online community.

1.1 Related Work: Moonboards
As far as we can tell, very little work has been done thus far in the
space of climbing problem/route generation. Further, anecdotally
speaking, the task of route-setting tends to be seen by climbers as
one that requires more than just practical skill—it is one that draws
on creativity. For this reason, MoonBoard problem generation poses
an exciting challenge for generative models.

As mentioned, the space of climbing problem generation, and
even classification, seems to be relatively untouched. Some smaller
GitHub-hosted projects seem to apply neural networks to classify
the difficulty of existing MoonBoard problems (e.g. with an MLP,
with a CNN, with an LSTM). We found one one GitHub-hosted
project that seems to have experimented with generating novel
MoonBoard problems. However, each of these repositories appears
minimally-documented, and the results of each project is unclear.
For the one generative project, problem generation and difficulty
classification are done in two separate steps, so the starting “hold”
is chosen at random to begin problem generation, and problem
difficulty is assessed post-generation.

In one paper from an undergraduate machine learning final
project, the authors present a more methodological approach to

classifying MoonBoard problems [1]. Comparing Naive Bayes, Soft-
max Regression, and CNN (with ordinal output), they found the
CNN to be the best-performing.

1.2 Related Work: ACGANs
Taking this further, it would be helpful for users to be able to
generate a path according to their desired difficulty, making it
easier to find a path they will enjoy. This could be possible by using
an ACGAN, shown in the following figure.

Figure 3: Model of an ACGAN

An AC-GAN, or Auxiliary Classifier Generative Adversarial Net-
work, is an extension of the classic GAN method. In an ACGAN,
the data is also given a classifier or label. The discriminator then
has one more job in addition to being able to determine whether
data is "real" or "fake". The discriminator now must also be able

2019-12-11 22:52. Page 2 of 1–6.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Climb a-GAN: Generation of Rock Climbing Problems Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

to predict the class label of the given data. This then allows the
generation of data of a specific type, according to the class label.

In the case of rock climbing problems, the different difficulties
of the climbing problems could be used as the different classes.
The ACGAN could then generate paths similar to those of the
same difficulty in the training data set, which in this case would
be the collection of user-made paths on the MoonBoard website.
The generated image will then be a generic image of the 11 x 18
MoonBoard grid, and the holds that are used in the path will be
circled.

2 METHOD
For our approach to the problem, we decided to use an auxiliary clas-
sifier GAN [2] with training in Tensorflow/Keras. ACGAN builds on
"cGAN" by also coercing the discriminator to output classification,
not just real/fake. Our extra classifiers are the different difficulty
ratings of the climbing paths. These classifiers are based off the
Fontainebleau system for classifying the difficulty of climbing paths,
as this is a format used worldwide and supported by MoonBoard.
This system grades paths on a range from 6B+ to 8B+with 13 classes
(labeled 1 - 13).

As previously mentioned, the MoonBoard website hosts thou-
sands of examples of custom paths for MoonBoards. We gathered
sets of example paths for each difficulty grade from 6B+ to 8B+
(some prior Github-hosted projects had already gathered sets of
these paths according to difficulty grade to use in their projects
on automatically grading the difficulty of a MoonBoard path). We
trained our ACGAN with these sample paths according to their
difficulty.

The different difficulties, however, are on more of an arbitrary
scale, so the different difficulties are more relative than a gradual
scale. We opted to try using ordinal regression in the classification
of the classes to deal with this difference. The class labels will then
be represented with modified one-hots; e.g. 3 = [1, 1, 1, 0, . . .].

The MoonBoard itself will be modeled computationally as a
three dimensional array: [x, y, z]. x and y will refer to the x and y
coordinates on the 11 x 18 MoonBoard grid, and z will refer to the
depth. Depth in this case refers to the order of the holds: starting,
intermediate, and ending holds. 0 represents the starting holds
depth, 1 represents the intermediate holds depth, and 2 represents
the ending holds depth. At each point in this vector, the hold is
represented as either a 0 or 1, signifying that the hold is not present
in the path or it is used, respectively.

To visualize the climbing path, we first started with a blank image
of a MoonBoard. Then, using the vectors output by the ACGAN, we
circled the holds that would be used in the route. The colors of the
circles depended on the depth, or order of the holds. The starting
holds (depth 0) were circled in green, the intermediate holds (depth
1) were circled in blue, and the ending holds (depth 2) were circled
in red. To be able to circle the correct position, the coordinates of
each hold on the image were hard coded. The sample output was
something similar to the following figure.

2.1 Data
As discussed, all MoonBoard data is user-generated, thus there
are thousands of problems which we can access for training data.

Figure 4: Example of a MoonBoard climbing path. “Bowl of
Ramen,” 6B+, by user catplan

Labeled training data was pulled from the MoonBoard website
for all problems using the "2016 Holdset," the oldest MoonBoard
configuration which also has the most training data available at
present (n=31335). Table 1 displays the distribution of problems by
grade (difficulty), with 6A+ being the easiest problem MoonBoard
and 8B+ being the hardest.

Table 1: Distribution of Problem Data

Grade n. Grade n. Grade n.
6A+ 3 7A 4278 7C+ 429
6B 2 7A+ 3264 8A 213
6B+ 10544 7B 1488 8A+ 56
6C 3459 7B+ 1705 8B 33
7C+ 4510 7C 1320 8B+ 31

Figure 5: Distribution of Problem Data

2.2 Training Details
Through preliminary testing with handwritten digit generation,
we identified a number of strategies to help stabilize training: one-
sided label smoothing (with alpha=0.9) and noise on the ground
truth data fed to the generator (with a probability of being flipped
of 0.05). We also found that passing the training data as binary
(i.e., black and white as opposed to greyscale) was sufficient to
train the generator to produce nearly-binary output. Lastly, for

2019-12-11 22:52. Page 3 of 1–6.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Geary and Valdez

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

the MoonBoard GAN, we experimented with training the classifier
using ordinal regression as opposed to categorical crossentropy.

3 EXPERIMENTS
We proceeded to search through a large number of possible archi-
tectures and hyperparameters in hopes of developing a suitable
GAN. Tables 2 and 3 show the primary architecture modifications
that we first attempted. For each, we also varied the dimensionality
of the latent space (between 60 and 120) and whether to train the
classifier with ordinal regression.

Table 2: Generator Architectures

G Kernels G Strides G Filters
A [3, (6, 4), (11, 7)] [1, 1, 1] [32, 16, 3]
B [6, 6] [1, 1] [16, 3]
C " " [32, 3]
D [6, 6, 6] [1, 1, 1] [32, 16, 3]
E [7, 7, 7] " "
F [3, 6, 7] [1/2, 1, 1] [32, 16, 3]

Figure 6: Generator Loss

Figures 6 and 7 show the overlaid losses of all of the discrimi-
nators and generators tested. As can be seen, the majority of all
configurations reached some degree of stability (indicated by a
convergence, rather than a divergence towards 0 or infinity).

After these models, we also tested a number of multi-layer per-
ceptron models and searched through a variety of learning rates.

Unfortunately, despite much searching, all of our models suffer
from mode collapse. In other words, despite reaching some amount
of convergence, they all produce nearly-identical output regardless
of noise that is input. For example, Figure 8 displays an output of
one model after 10k iterations. Each column represents a difficulty
level, and each row should contain a unique problem. However, all
problems in a given column are identical.

3.1 User Survey
After generating paths that are traversible, we will have a few
rock climbers actually attempt them on a local MoonBoard. After

Figure 7: Discriminator Loss

Figure 8: Example of Mode Collapse

Table 3: Discriminator Architectures

D Kernels D Strides D Filters
A [(11, 7), (6, 4), 3] [2, 1, 1] [8, 16, 32]
B [4, 4] [1, 1] [8, 16]
C " " [16, 32]
D [4, 4, 4] [1, 1 ,1] [8, 16, 32]
E [(9, 6), (9, 6), (9, 6)] " "
F [7, 4, 3] [2, 1 ,1] [8, 16, 32]

attempting the generated path, the climbers will fill out a short
survey based on their experience with the generated path. They
will be asked to rate their enjoyment of the path on a scale of 1 - 5
and how accurately the path matched the input difficulty on a scale
of 1 - 5.

4 CONCLUSION
4.1 Future Work
As discussed, so far we were unable to finish creating a stable
generator for rock climbing problems. Future work could work
on adjusting the hyperparameters or the algorithm to better work
with the discrete differences between the problem difficulties, and
ensure that there exist some starting and ending holds. The rest of
the future work ideas is dependent on first fixing the system itself.

2019-12-11 22:52. Page 4 of 1–6.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Climb a-GAN: Generation of Rock Climbing Problems Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580Figure 9: Example G Architecture

Figure 10: Example G Architecture

For the evaluation, we would like to be able to first generate a set
of example paths using our trained ACGAN. Using this set of paths,
we would test them with both (1) our discriminator and (2) one of
the aforementioned Github-hosted projects (if we can find one that
works reliably); this is to verify proper route-generation for the
grade. We would also search for nearest-neighbors of the generated
problem to ensure that the generator is not simply memorizing the
training set, as well as if the generated collapsed and is just out-
putting the same path. Then we would move to evaluating the paths
in person. The generated paths would be evaluated by members of
a local rock climbing club (Cove is a member of this club!). After
completing the suggested path, the members would respond with

2019-12-11 22:52. Page 5 of 1–6.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Geary and Valdez

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

whether the path matched the given difficulty and their rating of
how much they liked the given path (how challenging/fun it was).
Again, this is all once a working rock climbing problem generator
is established.

Future work could then craft this system into a fully functioning
tool for climbers to use on the go. This could include creating a
website or app that allows user interaction and access to the online
community. This means a rating or star system for the generated
paths could also be included, allowing users to know which paths
were most enjoyable. Problems are usually given fun, quirky names,
as shown in the problem in Figure 2 which was named "Bowl of
Ramen." Theremay be away to even generate these names alongside
the generated problems!

This solution could also be improved in manyways. As discussed,
thereweremany difficulties with generating traversable paths of the

different difficulties, especially with those with insufficient training
data. Other generative models may do a better job at generating
these problems with better accuracy. Experimenting with different
models and different approaches may result in a working (and
maybe even easier) solution to the problem.

ACKNOWLEDGMENTS
Acknowledgements

REFERENCES
[1] Sarmiento Dobles and Satterthwaite. 2017. Machine Learning Methods for Climbing

Route Classification. Technical Report. Stanford University, Stanford, CA.
[2] Augustus Odena, Christopher Olah, and Jonathon Shlens. 2016. Conditional Image

Synthesis With Auxiliary Classifier GANs. arXiv:stat.ML/1610.09585

2019-12-11 22:52. Page 6 of 1–6.

http://arxiv.org/abs/stat.ML/1610.09585

	Abstract
	1 Introduction
	1.1 Related Work: Moonboards
	1.2 Related Work: ACGANs

	2 Method
	2.1 Data
	2.2 Training Details

	3 Experiments
	3.1 User Survey

	4 Conclusion
	4.1 Future Work

	Acknowledgments
	References

